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CYCLIC REDUNDANCY CHECK
 

 

Insert this material after Chapter 13 (Gray Code). There is a chapter on ECC that
should follow this chapter.

14–1  Cyclic Redundancy Check
The cyclic redundancy check, or CRC, is a technique for detecting errors in digital
data, but not for making corrections when errors are detected. It is used primarily
in data transmission. In the CRC method, a certain number of check bits, often
called a checksum, are appended to the message being transmitted. The receiver
can determine whether or not the check bits agree with the data, to ascertain with
a certain degree of probability whether or not an error occurred in transmission. If
an error occurred, the receiver sends a “negative acknowledgement” (NAK) back
to the sender, requesting that the message be retransmitted.

The technique is also sometimes applied to data storage devices, such as a
disk drive. In this situation each block on the disk would have check bits, and the
hardware might automatically initiate a reread of the block when an error is
detected, or it might report the error to software.

The material that follows speaks in terms of a “sender” and a “receiver” of a
“message,” but it should be understood that it applies to storage writing and read-
ing as well.

Background
There are several techniques for generating check bits that can be added to a mes-
sage. Perhaps the simplest is to append a single bit, called the “parity bit,” which
makes the total number of 1-bits in the code vector (message with parity bit
appended) even (or odd). If a single bit gets altered in transmission, this will
change the parity from even to odd (or the reverse). The sender generates the par-
ity bit by simply summing the message bits modulo 2—that is, by exclusive or’ing
them together. It then appends the parity bit (or its complement) to the message.
The receiver can check the message by summing all the message bits modulo 2
and checking that the sum agrees with the parity bit. Equivalently, the receiver can
sum all the bits (message and parity) and check that the result is 0 (if even parity
is being used).

This simple parity technique is often said to detect 1-bit errors. Actually it
detects errors in any odd number of bits (including the parity bit), but it is a small
comfort to know you are detecting 3-bit errors if you are missing 2-bit errors.
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For bit serial sending and receiving, the hardware to generate and check a sin-
gle parity bit is very simple. It consists of a single exclusive or gate together with
some control circuitry. For bit parallel transmission, an exclusive or tree may be
used, as illustrated in Figure 14–1. Efficient ways to compute the parity bit in soft-
ware are given in Section 5–2 on page 74.

Other techniques for computing a checksum are to form the exclusive or of all
the bytes in the message, or to compute a sum with end-around carry of all the
bytes. In the latter method the carry from each 8-bit sum is added into the least
significant bit of the accumulator. It is believed that this is more likely to detect
errors than the simple exclusive or, or the sum of the bytes with carry discarded.

A technique that is believed to be quite good in terms of error detection, and
which is easy to implement in hardware, is the cyclic redundancy check. This is
another way to compute a checksum, usually eight, 16, or 32 bits in length, that is
appended to the message. We will briefly review the theory and then give some
algorithms for computing in software a commonly used 32-bit CRC checksum.

Theory
The CRC is based on polynomial arithmetic, in particular, on computing the
remainder of dividing one polynomial in GF(2) (Galois field with two elements)
by another. It is a little like treating the message as a very large binary number, and
computing the remainder on dividing it by a fairly large prime such as 
Intuitively, one would expect this to give a reliable checksum.

A polynomial in GF(2) is a polynomial in a single variable x whose coeffi-
cients are 0 or 1. Addition and subtraction are done modulo 2—that is, they are
both the same as the exclusive or operator. For example, the sum of the polynomi-
als

FIGURE 14–1. Exclusive or tree.
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is  as is their difference. These polynomials are not usually written
with minus signs, but they could be, because a coefficient of –1 is equivalent to a
coefficient of 1.

Multiplication of such polynomials is straightforward. The product of one
coefficient by another is the same as their combination by the logical and opera-
tor, and the partial products are summed using exclusive or. Multiplication is not
needed to compute the CRC checksum.

Division of polynomials over GF(2) can be done in much the same way as
long division of polynomials over the integers. Below is an example.

The reader might like to verify that the quotient of  multiplied by the
divisor of  plus the remainder of  equals the dividend.

The CRC method treats the message as a polynomial in GF(2). For example,
the message 11001001, where the order of transmission is from left to right
(110…) is treated as a representation of the polynomial  The
sender and receiver agree on a certain fixed polynomial called the generator poly-
nomial. For example, for a 16-bit CRC the CCITT (Comité Consultatif Interna-
tionale Télégraphique et Téléphonique)1 has chosen the polynomial

 which is now widely used for a 16-bit CRC checksum. To
compute an r-bit CRC checksum, the generator polynomial must be of degree r.
The sender appends r 0-bits to the m-bit message and divides the resulting poly-
nomial of degree  by the generator polynomial. This produces a remain-
der polynomial of degree  (or less). The remainder polynomial has r
coefficients, which are the checksum. The quotient polynomial is discarded. The
data transmitted (the code vector) is the original m-bit message followed by the r-
bit checksum.

There are two ways for the receiver to assess the correctness of the transmis-
sion. It can compute the checksum from the first m bits of the received data, and
verify that it agrees with the last r received bits. Alternatively, and following usual
practice, the receiver can divide all the  received bits by the generator poly-
nomial and check that the r-bit remainder is 0. To see that the remainder must be
0, let M be the polynomial representation of the message, and let R be the polyno-
mial representation of the remainder that was computed by the sender. Then the
transmitted data corresponds to the polynomial  (or, equivalently,

1. Since renamed the ITU-TSS (International Telecommunications Union - Telecom-
munications Standards Sector).
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). By the way R was computed, we know that  where G
is the generator polynomial and Q is the quotient (that was discarded). Therefore
the transmitted data,  is equal to QG, which is clearly a multiple of G. If
the receiver is built as nearly as possible just like the sender, the receiver will
append r 0-bits to the received data as it computes the remainder R. But the
received data with 0-bits appended is still a multiple of G, so the computed
remainder is still 0. 

That’s the basic idea, but in reality the process is altered slightly to correct for
such deficiencies as the fact that the method as described is insensitive to the num-
ber of leading and trailing 0-bits in the data transmitted. In particular, if a failure
occurred that caused the received data, including the checksum, to be all-0, it
would be accepted.

Choosing a “good” generator polynomial is something of an art, and beyond
the scope of this text. Two simple observations: For an r-bit checksum, G should
be of degree r, because otherwise the first bit of the checksum would always be 0,
which wastes a bit of the checksum. Similarly, the last coefficient should be 1
(that is, G should not be divisible by x), because otherwise the last bit of the
checksum would always be 0 (because  if G is divisible by x,
then R must be also). The following facts about generator polynomials are proved
in [PeBr] and/or [Tanen]:

• If G contains two or more terms, all single-bit errors are detected.

• If G is not divisible by x (that is, if the last term is 1), and e is the least 
positive integer such that G evenly divides  then all double errors 
that are within a frame of e bits are detected. A particularly good polyno-
mial in this respect is  for which 

• If  is a factor of G, all errors consisting of an odd number of bits are 
detected.

• An r-bit CRC checksum detects all burst errors of length  (A burst 
error of length r is a string of r bits in which the first and last are in error, 
and the intermediate  bits may or may not be in error.)

The generator polynomial  creates a checksum of length 1, which
applies even parity to the message. (Proof hint: For arbitrary  what is the
remainder of dividing  by ?)

It is interesting to note that if a code of any type can detect all double-bit and
single-bit errors, then it can in principle correct single-bit errors. To see this, sup-
pose data containing a single-bit error is received. Imagine complementing all the
bits, one at a time. In all cases but one, this results in a double-bit error, which is
detected. But when the erroneous bit is complemented, the data is error-free,
which is recognized. In spite of this, the CRC method does not seem to be used for
single-bit error correction. Instead, the sender is requested to repeat the whole
transmission if any error is detected.
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Practice
Table 14–1 shows the generator polynomials used by some common CRC stan-
dards. The “Hex” column shows the hexadecimal representation of the generator
polynomial; the most significant bit is omitted, as it is always 1.

The CRC standards differ in ways other than the choice of generating poly-
nomial. Most initialize by assuming that the message has been preceded by cer-
tain nonzero bits, others do no such initialization. Most transmit the bits within a
byte least significant bit first, some most significant bit first. Most append the
checksum least significant byte first, others most significant byte first. Some com-
plement the checksum.

CRC-12 is used for transmission of 6-bit character streams, and the others are
for 8-bit characters, or 8-bit bytes of arbitrary data. CRC-16 is used in IBM’s
BISYNCH communication standard. The CRC-CCITT polynomial, also known
as ITU-TSS, is used in communication protocols such as XMODEM, X.25,
IBM’s SDLC, and ISO’s HDLC [Tanen]. CRC-32 is also known as AUTODIN-II
and ITU-TSS (ITU-TSS has defined both 16- and a 32-bit polynomials). It is used
in PKZip, Ethernet, AAL5 (ATM Adaptation Layer 5), FDDI (Fiber Distributed
Data Interface), the IEEE-802 LAN/MAN standard, and in some DOD applica-
tions. It is the one for which software algorithms are given here.

The first three polynomials in Table 14–1 have  as a factor. The last
(CRC-32) does not.

To detect the error of erroneous insertion or deletion of leading 0’s, some pro-
tocols prepend one or more nonzero bits to the message. These don’t actually get
transmitted, they are simply used to initialize the key register (described below)
used in the CRC calculation. A value of r 1-bits seems to be universally used. The
receiver initializes its register in the same way.

The problem of trailing 0’s is a little more difficult. There would be no prob-
lem if the receiver operated by comparing the remainder based on just the mes-
sage bits to the checksum received. But, it seems to be simpler for the receiver to
calculate the remainder for all bits received (message and checksum) plus r
appended 0-bits. The remainder should be 0. But, with a 0 remainder, if the mes-

TABLE 14–1. GENERATOR POLYNOMIALS OF SOME CRC CODES

Common 
Name r

Generator

Polynomial Hex

CRC-12 12 80F

CRC-16 16 8005

CRC-CCITT 16 1021

CRC-32 32 04C1 1DB7

x12 x11 x3 x2 x 1+ + + + +

x16 x15 x2 1+ + +

x16 x12 x5 1+ + +

x32 x26 x23 x22 x16 x12

x11 x10 x8 x7 x5 x4 x2 x 1
+ + + + + +
+ + + + + + + +

x 1+
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sage has trailing 0-bits inserted or deleted, the remainder will still be 0, so this
error goes undetected.

The usual solution to this problem is for the sender to complement the check-
sum before appending it. Because this makes the remainder calculated by the
receiver nonzero (usually), the remainder will change if trailing 0’s are inserted or
deleted. How then does the receiver recognize an error-free transmission?

Using the “mod” notation for remainder, we know that

Denoting the “complement” of the polynomial R by  we have

Thus the checksum calculated by the receiver for an error-free transmission
should be

This is a constant (for a given G). For CRC-32 this polynomial, called the residual
or residue, is

or hex C704DD7B [Black].

Hardware
To develop a hardware circuit for computing the CRC checksum, we reduce the
polynomial division process to its essentials.

The process employs a shift register, which we denote by CRC. This is of
length r (the degree of G) bits, not  as you might expect. When the subtrac-
tions (exclusive or’s) are done, it is not necessary to represent the high-order bit,
because the high-order bits of G and the quantity it is being subtracted from are
both 1. The division process might be described informally as follows:

Initialize the CRC register to all 0-bits.
     Get first/next message bit m.
     If the high-order bit of CRC is 1,
          Shift CRC and m together left 1 position, and XOR the result with the 
          low-order r bits of G.

Mxr R+( ) mod G 0.=

R,

Mxr R+( ) mod G Mxr xr 1– xr 2– … 1 R–+ + +( )+( ) mod G=

Mxr R+( ) xr 1– xr 2– … 1+ + + +( ) mod G=

xr 1– xr 2– … 1+ + +( ) mod G.=

xr 1– xr 2– … 1+ + +( ) mod G.

x31 x30 x26 x25 x24 x18 x15 x14 x12

x11 x10 x8 x6 x5 x4 x3 x 1,
+ + + + + + + + +
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     Otherwise, 
          Just shift CRC and m left 1 position.
     If there are more message bits, go back to get the next one.

It might seem that the subtraction should be done first, and then the shift. It
would be done that way if the CRC register held the entire generator polynomial,
which in bit form is  bits. Instead, the CRC register holds only the low-order
r bits of G, so the shift is done first, to align things properly.

Below is shown the contents of the CRC register for the generator G =
 and the message M =  Expressed in binary, G =

1011 and M = 11100110.

000 Initial CRC contents. High-order bit is 0, so just shift in first message bit.
001 High-order bit is 0, so just shift in second message bit, giving:
011 High-order bit is 0 again, so just shift in third message bit, giving:
111 High-order bit is 1, so shift and then XOR with 011, giving:
101 High-order bit is 1, so shift and then XOR with 011, giving:
001 High-order bit is 0, so just shift in fifth message bit, giving:
011 High-order bit is 0, so just shift in sixth message bit, giving:
111 High-order bit is 1, so shift and then XOR with 011, giving:
101 There are no more message bits, so this is the remainder.

These steps can be implemented with the (simplified) circuit shown in
Figure 14–2, which is known as a feedback shift register.

The three boxes in the figure represent the three bits of the CRC register. When a
message bit comes in, if the high-order bit (x2 box) is 0, simultaneously the mes-
sage bit is shifted into the x0 box, the bit in x0 is shifted to x1, the bit in x1 is shifted
to x2, and the bit in x2 is discarded. If the high-order bit of the CRC register is 1,
then a 1 is present at the lower input of each of the two exclusive or gates. When
a message bit comes in, the same shifting takes place but the three bits that wind
up in the CRC register have been exclusive or’ed with binary 011. When all the
message bits have been processed, the CRC holds M mod G.

If the circuit of Figure 14–2 were used for the CRC calculation, then after
processing the message, r (in this case 3) 0-bits would have to be fed in. Then the
CRC register would have the desired checksum,  But, there is a way
to avoid this step with a simple rearrangement of the circuit.

FIGURE 14–2. Polynomial division circuit for G = 

r 1+

x3 x 1+ + x7 x6 x5 x2 x.+ + + +

+ +x0x1x2 Message
Input

x3 x 1.+ +

Mxr mod G.
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Instead of feeding the message in at the right end, feed it in at the left end, r
steps away, as shown in Figure 14–3. This has the effect of premultiplying the
input message M by xr. But premultiplying and postmultiplying are the same for
polynomials. Therefore, as each message bit comes in, the CRC register contents
are the remainder for the portion of the message processed, as if that portion had
r 0-bits appended.

Figure 14–4 shows the circuit for the CRC-32 polynomial.

Software
Figure 14–5 shows a basic implementation of CRC-32 in software. The CRC-32
protocol initializes the CRC register to all 1’s, transmits each byte least significant
bit first, and complements the checksum. We assume the message consists of an
integral number of bytes.

To follow Figure 14–4 as closely as possible, the program uses left shifts.
This requires reversing each message byte and positioning it at the left end of the
32-bit register denoted “byte” in the program. The word-level reversing pro-

FIGURE 14–3. CRC circuit for G = 

FIGURE 14–4. CRC circuit for CRC-32.
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gram shown in Figure 7–1 on page 102 may be used (although this is not very effi-
cient, because we need to reverse only eight bits).

The code of Figure 14–5 is shown for illustration only. It can be improved
substantially while still retaining its one-bit-at-a-time character. First, notice that
the eight bits of the reversed byte are used in the inner loop’s if-statement and
then discarded. Also, the high-order eight bits of crc are not altered in the inner
loop (other than by shifting). Therefore, we can set crc = crc ^ byte ahead of
the inner loop, simplify the if-statement, and omit the left shift of byte at the
bottom of the loop.

The two reversals can be avoided by shifting right instead of left. This
requires reversing the hex constant that represents the CRC-32 polynomial, and
testing the least significant bit of crc. Finally, the if-test can be replaced with
some simple logic, to save branches. The result is shown in Figure 14–6.

unsigned int crc32(unsigned char *message) {
   int i, j;
   unsigned int byte, crc;

   i = 0;
   crc = 0xFFFFFFFF;
   while (message[i] != 0) {
      byte = message[i];            // Get next byte.
      byte = reverse(byte);         // 32-bit reversal.
      for (j = 0; j <= 7; j++) {    // Do eight times.
         if ((int)(crc ^ byte) < 0)
              crc = (crc << 1) ^ 0x04C11DB7;
         else crc = crc << 1;
         byte = byte << 1;          // Ready next msg bit.
      }
      i = i + 1;
   }
   return reverse(~crc);
}

FIGURE 14–5. Basic CRC-32 algorithm.
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It is not unreasonable to unroll the inner loop by the full factor of eight. If this
is done, the program of Figure 14–6 executes in about 46 instructions per byte of
input message. This includes a load and a branch. (We rely on the compiler to
common the two loads of message[i], and to transform the while-loop so
there is only one branch, at the bottom of the loop.)

Our next version employs table lookup. This is the usual way that CRC-32 is
calculated. Although the programs above work one bit at a time, the table lookup
method (as usually implemented) works one byte at a time. A table of 256 full-
word constants is used.

The inner loop of Figure 14–6 shifts register crc right eight times, while
doing an exclusive or operation with a constant when the low-order bit of crc is
1. These steps can be replaced by a single right shift of eight positions, followed
by a single exclusive or with a mask which depends on the pattern of 1-bits in the
rightmost eight bits of the crc register.

It turns out that the calculations for setting up the table are the same as those
for computing the CRC of a single byte. The code is shown in Figure 14–7. To
keep the program self-contained, it includes steps to set up the table on first use. In
practice, these steps would probably be put in a separate function, to keep the
CRC calculation as simple as possible. Alternatively, the table could be defined
by a long sequence of array initialization data. When compiled with GCC to the
basic RISC, the function executes 13 instructions per byte of input. This includes
two loads and one branch instruction.

unsigned int crc32(unsigned char *message) {
   int i, j;
   unsigned int byte, crc, mask;

   i = 0;
   crc = 0xFFFFFFFF;
   while (message[i] != 0) {
      byte = message[i];            // Get next byte.
      crc = crc ^ byte;
      for (j = 7; j >= 0; j--) {    // Do eight times.
         mask = -(crc & 1);
         crc = (crc >> 1) ^ (0xEDB88320 & mask);
      }
      i = i + 1;
   }
   return ~crc;
}

FIGURE 14–6. Improved bit-at-a-time CRC-32 algorithm.
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 Faster versions of these programs can be constructed by standard techniques,
but there is nothing dramatic known to this writer. One can unroll loops and do
careful scheduling of loads that the compiler may not do automatically. One can
load the message string a halfword or a word at a time (with proper attention paid
to alignment), to reduce the number of loads of the message, and of exclusive or’s
of crc with the message (see exercise 1). The table lookup method can process
message bytes two at a time by using a table of size 65536 words. This might
make the program run faster or slower, depending on the size of the data cache
and the penalty for a miss.

unsigned int crc32(unsigned char *message) {
   int i, j;
   unsigned int byte, crc, mask;
   static unsigned int table[256];

   /* Set up the table, if necessary. */

   if (table[1] == 0) {
      for (byte = 0; byte <= 255; byte++) {
         crc = byte;
         for (j = 7; j >= 0; j--) {    // Do eight times.
            mask = -(crc & 1);
            crc = (crc >> 1) ^ (0xEDB88320 & mask);
         }
         table[byte] = crc;
      }
   }

   /* Through with table setup, now calculate the CRC. */

   i = 0;
   crc = 0xFFFFFFFF;
   while ((byte = message[i]) != 0) {
      crc = (crc >> 8) ^ table[(crc ^ byte) & 0xFF];
      i = i + 1;
   }
   return ~crc;
}

FIGURE 14–7. Table lookup CRC algorithm.
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