
On-Line Computer Graphics Notes

BRESHENHAM’S ALGORITHM

Kenneth I. Joy
Visualization and Graphics Research Group

Department of Computer Science
University of California, Davis

Overview

The basic ”line drawing” algorithm used in computer graphics is Bresenham’s Algorithm. This algo-

rithm was developed to draw lines on digital plotters, but has found wide-spread usage in computer graphics.

The algorithm is fast – it can be implemented with integer calculations only – and very simple to describe.

Bresenham’s Algorithm

Consider a line with initial point(x1, y1) and terminal point(x2, y2) in device space. If∆x = x2 − x1

and∆y = y2 − y1, we define thedriving axis (DA) to be thex-axis if |∆x| ≥ |∆y|, and they-axis

if |∆y| > |∆x|. TheDA is used as the “axis of control” for the algorithm and is the axis of maximum

movement. Within the main loop of the algorithm, the coordinate corresponding to theDA is incremented

by one unit. The coordinate corresponding to the other axis (usually denoted thepassive axisor PA) is only

incremented as needed.

The best way to describe Bresenham’s algorithm is to work through an example. Consider the following

example, in which we wish to draw a line from(0, 0) to (5, 3) in device space.

�

�

�

�
�

�

���
	��
�

�������
�

Bresenham’s algorithm begins with the point(0, 0) and “illuminates” that pixel. Sincex is theDA in this

example, it then increments thex coordinate by one. Rather than keeping track of they coordinate (which

increases bym = ∆y/∆x, each time thex increases by one), the algorithm keeps an error boundε at each

stage, which represents the negative of the distance from the point where the line exits the pixel to the top

edge of the pixel (see the figure). This value is first set tom − 1, and is incremented bym each time thex

coordinate is incremented by one. Ifε becomes greater than zero, we know that the line has moved upwards

one pixel, and that we must increment oury coordinate and readjust the error to represent the distance from

the top of the new pixel – which is done by subtracting one fromε.

The reader can examine the above illustration and the following table to see the complete operation of

the algorithm on this example.

2

(x, y) ε description

(0, 0) -0.4 illuminate pixel(0, 0)
0.2 incrementε by 0.6

(1, 0) incrementx by 1

(1, 0) 0.2 illuminate pixel(1, 0)
sinceε > 0

(1, 1) incrementy by 1
-0.8 decrementε by 1
-0.2 incrementε by 0.6

(2, 1) incrementx by 1

(2, 1) -0.2 illuminate pixel(2, 1)
0.4 incrementε by 0.6

(3, 1) incrementx by 1

(3, 1) 0.4 illuminate pixel(3, 1)
sinceε > 0

(3, 2) incrementy by 1
-0.6 decrementε by 1
0.0 incrementε by 0.6

(4, 2) incrementx by 1

(4, 2) 0.0 illuminate pixel(4, 2)

Assuming that theDA is thex-axis, an algorithmic description of Bresenham’s algorithm is as follows:

Bresenham’s Algorithm

The points(x1, y1) and(x2, y2) are assumed
not equal and integer valued.

ε is assumed to be real.

Let ∆x = x2 − x1

Let ∆y = y2 − y1

Let m = ∆y
∆x

Let j = y1

Let ε = m− 1

for i = x1 to x2 − 1
illuminate (i, j)
if (ε ≥ 0)

j + = 1
ε− = 1.0

3

end if
i + = 1
ε + = m
next i

finish

All algorithms presented in these notes assume that∆x and∆y

are positive. If this is not the case, the algorithm is essentially the

same except for the following:

• ε is calculated using|∆y
∆x |.

• x andy are decremented (instead of incremented) by one if

the sign of∆x or ∆y is less than zero, respectively.

The Integer Bresenham’s Algorithm

Bresenham’s Algorithm, as given in the previous section, requires the use of floating point arithmetic to

calculate the slope of the line and to evaluate the error term. We note thatε is initialized to

ε =
∆y

∆x
− 1

and is incremented by∆y
∆x at each step. Since both∆y and∆x are integer quantities, we can convert to an all

integer format by multiplying the operations through by∆x. That is, we will consider the integer quantity

ε̄, whereε̄ is initialized to

ε̄ = ∆xε = ∆y − ∆x

and we will increment̄ε by ∆y at each step, and decrement it by∆x whenε becomes positive.

Our example from the section above, which attempts to draw a line from(0, 0) to (5, 3) in screen space,

can now be converted to an integer algorithm. Consider the figure and table below, where∆x = 5, ∆y = 3

andε̄ = ∆x−∆y = −2.

4

�

�

�

�
�

�

���
	��
�

�������
�

(x, y) ε̄ description

(0, 0) -2 illuminate pixel(0, 0)
1 incrementε by ∆y

(1, 0) incrementx by 1

(1, 0) 1 illuminate pixel(1, 0)
sinceε̄ > 0

(1, 1) incrementy by 1
-4 decrement̄ε by 5
-1 incrementε by ∆y

(2, 1) incrementx by 1

(2, 1) -1 illuminate pixel(2, 1)
2 incrementε by ∆y

(3, 1) incrementx by 1

(3, 1) 2 illuminate pixel(3, 1)
sinceε̄ > 0

(3, 2) incrementy by 1
-3 decrement̄ε by 5
0 incrementε by ∆y

(4, 2) incrementx by 1

(4, 2) 0 illuminate pixel(4, 2)

5

Thus the integer version of Bresenham’s algorithm is constructed as follows:

Bresenham’s Algorithm using Integer Arithmetic

The points(x1, y1) and(x2, y2) are assumed
not equal and integer valued.

ε̄ is assumed to be integer valued.

Let ∆x = x2 − x1

Let ∆y = y2 − y1

Let j = y1

Let ε̄ = ∆y −∆x

for i = x1 to x2 − 1
illuminate (i, j)
if (ε̄ ≥ 0)

j + = 1
ε̄− = ∆x
end if

i + = 1
ε̄ + = ∆y
next i

finish

Bresenham’s Algorithm for Lines with Arbitrary Endpoints

Bresenham’s algorithm, as described in the sections above, is limited by the fact that the lines to be drawn

have endpoints with integer coordinates. In this section, we consider a version of Bresenham’s algorithm

for lines that have endpoints with real coordinates. The only problem to overcome is the initial setting of the

error. Once this is done, the algorithm proceeds as before.

Consider a line with initial point(x1, y1) and terminal point(x2, y2) in device space, where we assume

the points are not the same. To calculate the correctε in this case, we refer to the following figure.

6

���

��� ���
	��

��������������

��

��� �"!
#

$&%�')(+*"'-,

If we consider the lower-left-hand corner of the grid to be(0, 0), then it is easily seen that the initialε is

ε = −
(

1− y1 −
∆y(1− x1)

∆x

)
We now utilize this to modify Bresenham’s algorithm accordingly.

Consider the following example, which attempts to draw a line from(0.75, 0.125) to (4.3, 2.8) in screen

space,

�

�

�

�

�

7

Bresenham’s algorithm calculates the newε as

ε = −
(

1− 0.125− 2.55(1− .75)
3.55

)
= −

(
0.75− .6375

3.55

)
= − (0.75− 0.17958)

= −0.57042

The algorithm begins with the point(0, 0) = (b0.75c, b0.125c) and then proceeds in exactly the same way

as Bresenham’s algorithm for lines having endpoints with integer coordinates.

The reader can examine the above illustration and the following table to see the complete operation of

the algorithm on this example. In this casem = 2.55
3.55 = .71831, and the lower left corner of the grid is

(bx1c, bx2c).

(x, y) ε description

(0, 0) -0.57042 illuminate pixel(0, 0)
0.14789 incrementε by 0.71831

(1, 0) incrementx by 1

(1, 0) 0.14789 illuminate pixel(1, 0)
sinceε > 0

(1, 1) incrementy by 1
-0.85211 decrementε by 1
-0.1338 incrementε by 0.71831

(2, 1) incrementx by 1

(2, 1) -0.1338 illuminate pixel(2, 1)
0.58451 incrementε by 0.71831

(3, 1) incrementx by 1

(3, 1) 0.58451 illuminate pixel(3, 1)
sinceε > 0

(3, 2) incrementy by 1
-0.41549 decrementε by 1
0.30282 incrementε by 0.71831

(4, 2) incrementx by 1

(4, 2) 0.30282 illuminate pixel(4, 2)

8

Assuming that theDA is thex-axis, the algorithmic description of Bresenham’s algorithm for lines with

arbitrary endpoints is as follows:

Bresenham’s Algorithm

The points(x1, y1) and(x2, y2) are assumed not equal
and have arbitrary real coordinates

ε is assumed to be real.

Let ∆x = x2 − x1

Let ∆y = y2 − y1

Let m = ∆y
∆x

Let i1 = bx1c
Let j = by1c
Let i2 = bx2c
Let ε = −(1− (y1 − j)− ∆y(1−(x1−i1))

∆x)
for i = i1 to i2

illuminate (i, j)
if (ε ≥ 0)

j + = 1
ε− = 1.0
end if

i + = 1
ε + = m
next i

finish

The Integer Bresenham’s Algorithm for Lines with Arbitrary Endpoints

Bresenham’s Algorithm, as given in the previous section, was adapted to lines that have endpoints with

arbitrary real coordinates. This algorithm again requires the use of floating point arithmetic to calculate the

slope of the line and to evaluate the error term. We note thatε is initialized to

ε = −
(

1− (y1 − by1c)−
∆y(1− (x1 − bx1c)

∆x

)

and is incremented by∆y
∆x at each step. However, we cannot do the same simplifications with this algorithm

as we did with the integer algorithm above, since in this case both∆y and∆x are real – not integer.

9

If we multiply through by∆x, we again obtain an approximation forε̄ that, at least, does not require

division.

ε̄ = ∆xε = −∆x(1− (y1 − by1c)) + ∆y(1− (x1 − bx1c))

However, to bring this algorithm back to integer form we assume that our basic pixel element is no longer

1× 1 in size, but now it ism×m in size, and utilize increments and decrements in the algorithm ofbm∆xc
andbm∆yc, respectively. The error term is first set tobmε̄c and the algorithm then proceeds as does the

version with endpoints that have integer coordinates.

If we address the example, which attempts to draw a line from(0.75, 0.125) to (4.3, 2.8) in screen space.

�

�

�

�

�

and if we let m = 10241, then we have that

bm∆xc = b1024(3.55)c

= b3635.2c

= 3635

1We note that ifm = 2k for somek, then this algorithm can be made especially fast

10

bm∆yc = b1024(2.55)c

= b2611.2c

= 2611

and

mε = −1024(∆x(1− 0.125)−∆y(1− 0.75))

= −1024(3.55(1− 0.125)− 2.55(1− 0.75)

= −1024(2.6625− .6375)

= −2073.6

and so we initialize the integer quantityε̄ = −2073, and the algorithm proceeds as follows:

(x, y) ε̄ description

(0, 0) -2073 illuminate pixel(0, 0)
538 incrementε by 2611

(1, 0) incrementx by 1

(1, 0) 538 illuminate pixel(1, 0)
sinceε̄ > 0

(1, 1) incrementy by 1
-3097 decrement̄ε by 3635
-486 incrementε by 2611

(2, 1) incrementx by 1

(2, 1) -486 illuminate pixel(2, 1)
2125 incrementε by 2611

(3, 1) incrementx by 1

(3, 1) 2125 illuminate pixel(3, 1)
sinceε̄ > 0

(3, 2) incrementy by 1
-1510 decrement̄ε by 3635
1101 incrementε by 2611

(4, 2) incrementx by 1

(4, 2) 1101 illuminate pixel(4, 2)

Thus the integer version for Bresenham’s algorithm with arbitrary endpoints is constructed as follows:

11

Integer Bresenham’s Algorithm

The points(x1, y1) and(x2, y2) are assumed not equal
and have arbitrary real coordinates

ε̄ is assumed to be integer valued.

Let ∆x = m(x2 − x1)
Let ∆y = m(y2 − y1)
Let i1 = bx1c
Let i2 = bx2c
Let j = by1c
Let ε̄ = b∆y(1− (x1 − i)−∆x(1− y1 − j)c

for i = i1 to i2
illuminate (x, y)
if (ε̄ ≥ 0)

y + = 1
ε̄− = ∆x
end if

x + = 1
ε̄ + = ∆y
next i

finish

Specifying the Driving Axis

If x is the driving axis, Bresenham’s algorithm produces only one illuminated cell per column in the

matrix of pixels. This feature allows the algorithm to be useful in the rasterization of polygons in image

space. In this algorithm, we require only one illuminated pixel per row be produced – which is possible with

Bresenham’s algorithm by fixing the driving axis as they axis. This can be done by a simple change to the

main loop of the algorithm.

Normally, within the main loop of the algorithm, the coordinate corresponding to theDA is incremented

by one unit and the coordinate corresponding to the other axis need only be incremented occasionally. When

we fix the driving axis, the coordinate on theDA is still incremented by one unit, however the coordinate on

the other axis may be incremented several times. This is actually a simple change to the algorithm, and and

can be implemented by replacing the statement

if (ε̄ ≥ 0)

with

while (ε̄ ≥ 0)

12

The algorithm now appears as follows2 We also note we have changed the algorithm to reflect that they

axis is the driving axis. We note thatm = ∆x
∆y , and that according to the following picture

���

��� ���
	��

�������������

���

���

�

���� �!�"� �#

$&%�')(')* +&,
-).-)/

we must consider two possible initial values forε, one if ∆x > 0 (the left-hand illustration) and one if

∆x < 0 (the right-hand illustration). Referring to the illustration, we have either

ε = −(1− x1 − y1
∆x

∆y
)

in the first case, or

ε = −(x1 − y1
∆x

∆y
)

in the second. In generalx1 must be replaced byx1 − bx1c andy1 by y1 − by1c as the figure is drawn as if

the lower-left-hand corner of the pixel is(0, 0).

We also need to recognize thatε may be greater than zero immediately, as in the following figure.

Therefore, we must move the “illuminate” step in our algorithm below the “while” statement. This will

insure that we are at the correct boundary pixel for the trapezoid.

2We are using the non-integer form of the algorithm, which is clearer in its presentation. The conversion to the integer algorithm
is straightforward.

13

�

�������	�
���

The algorithm now appears as follows:

Bresenham’s Algorithm with y as the Driving Axis

The points(x1, y1) and(x2, y2) are assumed not equal
ε is assumed to be real.

Let ∆x = x2 − x1

Let ∆y = y2 − y1

Let m = |∆x
∆y |

Let i = bx1c
Let j1 = by1c
Let j2 = by2c

if ∆x > 0
iinc = 1
ε = −(1− (x1 − i)− (y1 − j1)∆x

∆y)
else

iinc = −1
ε = −((x1 − i)− (y1 − j1)∆x

∆y)
end if

for j = j1 to j2

while (ε ≥ 0)
i + = 1
ε− = 1.0
end while

14

illuminate (i, j)

j + = 1
ε + = m
next j

finish

This algorithm will continue to increment thex value (and decrementε) as long asε is greater than zero.

It illuminates only one pixel per row on the line.

We are assuming that∆y 6= 0 which is valid since we are only considering the non-horizontal edges of

the trapezoids that we want to rasterize. It should also be mentioned that the above algorithm is written for

the case wherem is positive. Ifm = 0, thenε = −(1− (x1 − i)) and is never incremented. In this case, we

have a vertical line, and thex value will never need to be incremented. Ifm < 0, then we must decrementi

in the algorithm, and add|m| to ε.

Summary

Bresenham’s Algorithm is a fundamental algorithm in computer graphics. Its basic use it to draw lines

on raster graphics devices, however it is useful as a driving engine for many other graphics routines.

All contents copyright (c) 1996, 1997, 1998, 1999
Computer Science Department, University of California, Davis
All rights reserved.

15

