
1

1

CS 430/536
Computer Graphics I

Line Drawing

Week 1, Lecture 2

David Breen, William Regli and Maxim Peysakhov
Geometric and Intelligent Computing Laboratory

Department of Computer Science
Drexel University

http://gicl.cs.drexel.edu

2

Outline

•  Math refresher
•  Line drawing
•  Digital differential analyzer
•  Bresenham’s algorithm
•  XPM file format

3

Geometric Preliminaries

•  Affine Geometry
– Scalars + Points + Vectors and their ops

•  Euclidian Geometry
– Affine Geometry lacks angles, distance
– New op: Inner/Dot product, which gives

•  Length, distance, normalization
•  Angle, Orthogonality, Orthogonal projection

•  Projective Geometry

4

Affine Geometry

•  Affine Operations:

•  Affine Combinations: α1v1 + α2v2 + … + αnvn
where v1,v2, …,vn are vectors and
Example:

5

Mathematical Preliminaries
•  Vector: an n-tuple of real numbers
•  Vector Operations

–  Vector addition: u + v = w
•  Commutative,

associative,
identity element (0)

–  Scalar multiplication: cv

•  Note: Vectors and Points are different
–  Can not add points
–  Can find the vector between two points

6

Linear Combinations &
Dot Products

•  A linear combination of the vectors
v1, v2, … vn
is any vector of the form
 α1v1 + α2v2 + … + αnvn
where αi is a real number (i.e. a scalar)

•  Dot Product:

 a real value u1v1 + u2v2 + … + unvn written as

vu •

2

7

Fun with Dot Products

•  Euclidian Distance from (x,y) to (0,0)
 in general:

which is just:

•  This is also the length of vector v:
||v|| or |v|

•  Normalization of a vector:
•  Orthogonal vectors:

22 yx +
22

2
2
1 ... nxxx +++

!

!
x •
!
x

8

Projections & Angles
•  Angle between vectors,

•  Projection of vectors

Pics/Math courtesy of Dave Mount @ UMD-CP

!

! u " ! v = ! u ! v cos(#)

9

Matrices and Matrix Operators
•  A n-dimensional vector:

•  Matrix Operations:
–  Addition/Subtraction
–  Identity
–  Multiplication

•  Scalar
•  Matrix Multiplication

•  Implementation issue:
Where does the index start?
(0 or 1, it’s up to you…)

10

Matrix Multiplication
•  [C] = [A][B]
•  Sum over rows & columns
•  Recall: matrix multiplication

is not commutative
•  Identity Matrix:

1s on diagonal
0s everywhere else

11

Matrix Determinants

•  A single real number
•  Computed recursively
•  Example:

•  Uses:
–  Find vector ortho to two other vectors
–  Determine the plane of a polygon

bcad
db
ca

!="
#

$
%
&

'
det

!

det(A) = Ai, j ("1)
i+ j Mi, j

j=1

n

#

12

Cross Product

•  Given two non-parallel vectors, A and B
•  A x B calculates third vector C that is

orthogonal to A and B
•  A x B = (aybz - azby, azbx - axbz, axby - aybx)

!

A " B =

!
x
!
y
!
z

ax ay az

bx by bz

3

13

Matrix Transpose & Inverse

•  Matrix Transpose:
Swap rows and cols:

•  Facts about
the transpose:

•  Matrix Inverse: Given A, find B such that
 AB = BA = I BèA-1

 (only defined for square matrices)

14

Line Drawing

15

Scan-Conversion Algorithms

•  Scan-Conversion:
Computing pixel
coordinates for
ideal line on
2D raster grid

•  Pixels best
visualized as circles/
dots
–  Why? Monitor hardware

1994 Foley/VanDam/Finer/Huges/Phillips ICG

16

Drawing a Line
•  y = mx + B
•  m = ∆y / ∆x
•  Start at leftmost x and increment by 1
  ∆x = 1

•  yi = Round(mxi + B)
•  This is expensive and inefficient
•  Since ∆x = 1, yi+1 = yi + ∆y = yi + m

– No more multiplication!
•  This leads to an incremental algorithm

17

Digital Differential Analyzer
(DDA)

•  If |slope| is less then 1
§  ∆x = 1
§  else ∆y = 1

•  Check for vertical line
§  m = ∞

•  Compute corresponding
∆y (∆x) = m (1/m)

•  xk+1 = xk + ∆x
•  yk+1 = yk + ∆y
•  Round (x,y) for pixel location
•  Issue: Would like to avoid

floating point operations
1994 Foley/VanDam/Finer/Huges/Phillips ICG

xk+1

∆x
xk

yk+1

yk

∆y

Generalizing DDA

•  If |slope| is less than or equal to 1
– Ending point should be right of starting

point
•  If |slope| is greater than 1

– Ending point should be above starting
point

•  Vertical line is a special case
 ∆x = 0

18

4

19

Bresenham’s Algorithm

•  1965 @ IBM
•  Basic Idea:

–  Only integer
arithmetic

–  Incremental

•  Consider the implicit
equation for a line:

1994 Foley/VanDam/Finer/Huges/Phillips ICG

20

The Algorithm

Assumptions:
 0 ≤ slope ≤ 1
Pre-computed:

Pics/Math courtesy of Dave Mount @ UMD-CP

21

Bresenham’s Algorithm
Given:
implicit line equation:
Let:

where r and q are points on the line and
 dx ,dy are positive

Then:
Observe that all of these are integers
and: for points above the line

 for points below the line
Now…..

Pics/Math courtesy of Dave Mount @ UMD-CP

22

Bresenham’s Algorithm

•  Suppose we just
finished
–  (assume 0 ≤ slope ≤ 1)

other cases symmetric
•  Which pixel next?

–  E or NE

Pics/Math courtesy of Dave Mount @ UMD-CP

M
Q	

23

Assume:
•  Q = exact y value at
•  y midway between E and NE:
Observe:
If , then pick E
Else pick NE
If ,

it doesn’t matter

Bresenham’s Algorithm

Pics/Math courtesy of Dave Mount @ UMD-CP

M

Q < M

Q = M

M
Q	

24

•  Create “modified” implicit function (2x)

•  Create a decision variable D to select,
where D is the value of f at the midpoint:

Bresenham’s Algorithm

Pics/Math courtesy of Dave Mount @ UMD-CP

M

5

25

Bresenham’s Algorithm

•  If then M is below the line
– NE is the closest pixel

•  If then M is above the line
– E is the closest pixel

M

26

Bresenham’s Algorithm

•  If then M is below the line
– NE is the closest pixel

•  If then M is above the line
– E is the closest pixel

•  Note: because we multiplied by 2x, D is
now an integer---which is very good news

•  How do we make this incremental??

•  What increment for computing a new D?
•  Next midpoint is:

•  Hence, increment by:
27

Case I: When E is next

Pics/Math courtesy of Dave Mount @ UMD-CP

M

28

Case II: When NE is next

•  What increment for computing a new D?
•  Next midpoint is:

•  Hence, increment by:
Pics/Math courtesy of Dave Mount @ UMD-CP

M

29

How to get an initial value for D?

•  Suppose we start at:
•  Initial midpoint is:
Then:

Pics/Math courtesy of Dave Mount @ UMD-CP
30

The Algorithm

Assumptions:
 0 ≤ slope ≤ 1
Pre-computed:

Pics/Math courtesy of Dave Mount @ UMD-CP

6

31

Generalize Algorithm

•  If qx > rx, swap points
•  If slope > 1, always increment y,

conditionally increment x
•  If -1 <= slope < 0, always increment x,

conditionally decrement y
•  If slope < -1, always decrement y,

conditionally increment x
•  Rework D increments

Generalize Algorithm

•  Reflect line into first case
•  Calculate pixels
•  Reflect pixels back into original

orientation

32

33

Bresenham’s Algorithm:
Example

34

Bresenham’s Algorithm:
Example

35

Bresenham’s Algorithm:
Example

36

Bresenham’s Algorithm:
Example

7

37

Bresenham’s Algorithm:
Example

38

Bresenham’s Algorithm:
Example

39

Bresenham’s Algorithm:
Example

40

Bresenham’s Algorithm:
Example

41

Bresenham’s Algorithm:
Example

42

Some issues with
Bresenham’s Algorithms

•  Pixel ‘density’ varies
based on slope
–  straight lines look

darker, more pixels per
unit length

–  Endpoint order
–  Line from P1 to P2

should match P2 to P1
–  Always choose E when

hitting M, regardless of
direction

1994 Foley/VanDam/Finer/Huges/Phillips ICG

8

44

XPM Format

•  Encoded pixels
•  C code

•  ASCII Text file
•  Viewable on Unix
w/ display
•  On Windows with
IrfanVIew
•  Translate w/
convert 45

XPM Basics

•  X PixelMap (XPM)
•  Native file format in X Windows
•  Color cursor and icon bitmaps
•  Files are actually C source code
•  Read by compiler instead of viewer
•  Successor of X BitMap (XBM) B-W format

46

XPM Supports Color

47

XPM: Defining Grayscales
and Colors

•  Each pixel specified by an ASCII char
•  key describes the context this color should be

used within. You can always use “c” for
“color”.

•  Colors can be specified:
–  color name
–  “#” followed by the RGB code in hexadecimal

•  RGB – 24 bits (2 characters ‘0’ - ‘f’) for each
color.

48

XPM: Specifying Color

Color Name RGB Color
black # 00 00 00

white # ff ff ff

80 80 80

red # ff 00 00

green # 00 ff 00

blue # 00 00 ff

49

XPM Example
•  Array of C strings

•  The XPM format assumes the
origin (0,0) is in the upper left-
hand corner.

•  First string is “width height
ncolors cpp”

•  Then you have "ncolors" strings
associating characters with
colors.

•  And last you have "height"
strings of "width" *
"chars_per_pixel" characters

9

51

Programming assignment 1
•  Input PostScript-like file
•  Output B/W XPM
•  Primary I/O formats for the course
•  Create data structure to hold points and lines

in memory (the world model)
•  Implement 2D translation, rotation and scaling

of the world model
•  Implement line drawing and clipping
•  January 20th
•  Get started now!

52

Questions?

Go to Assignment 1

