
Line Drawing

CS150 Fall 2010



Objective

Given endpoints (x0, y0), (x1, y1) we want to shade the 
pixels that come closest to satisfying: 

y - y0 = (y1 - y0)/(x1 - x0) * (x - x0)
This is called rasterization



Towards a Line Drawing Algorithm

For now, we'll deal with the simple case where x0 < x1,    y0 
< y1, 0 <= slope <= 1. IE a (< 45 degree) line going up and 
to the right.
Idea: For each x, compute y according to our line equation, 
and round to the nearest integer.
This works, but it's slow.



Towards a Line Drawing Algorithm

Slightly better Idea: Track error (deviation from the ideal 
line) and a "current" y rather than recomputing y each time.

Error starts out at 0
For every step in the x direction, add the slope to the 
error
When do we know we need to change the y value? 
When the error is greater than half a pixel.

The error-tracking version of this algorithm is typically 
called Bresenham's Algorithm.



Bresenham's Line Drawing Algorithm



Bresenham's Line Drawing Algorithm

Pros:
Simple
Gives us the correct (minimal error) answer.
Seems fast
No "seek" operations on x or y.

Cons (right now):
Only handles lines in the first quadrant that aren't 
"steep".
Uses floating point arithmetic!

Slow, expensive, accumulates error.
No anti-aliasing.. but this is outside of the scope of our 
problem.



Can we do better?

We'd like to be able to draw any kind of line.
Right now we are restricted to lines with with slope < 1 that 
increase to the right.

 



Coordinate Ordering

Before we jump into the main loop, sort our points by x-
coordinate.
Now we have satisfied x0 < x1.
To deal with the case where y0 > y1 (the line is sloping 
down), we just need to decrease rather than increase y 
when our error gets too large.



Can we do better?



Steep Lines

Right now, if the line is steeper than 45 degrees, we get 
gaps because we only draw one pixel for every x 
coordinate.
This one is an easy fix: If we detect we are drawing a 
"steep" line, then we just switch all of the x's and y's.



Steep Lines



Floating Point

Doing floating point arithmetic is really hard
It is even harder to do it correctly

It would be best if we could use integers everywhere.
With a little bit of cleverness we can eliminate all of the 
floating points.
Let's start by multiplying all of our floating point values by 
(x1 - x0)



Floating Point



Floating Point

This is really close. The only problem remaining is that 
pesky multiply by 0.5.
We can closely approximate a multiply by 0.5 with a right 
shift by 1.
However, if we add error on every iteration of the algorithm 
we will probably get a wrong answer. Instead, we can 
choose to only pay this penalty once, when we initialize err.
Let me show you what I mean:



Floating Point



Floating Point

Finally, the canonical optimized version of this algorithm 
makes one more tiny optimization by 
inverting �err everywhere.



Floating Point



More than just lines

A concept that comes up frequently in computer graphics 
algorithm is that of a Digital Differential Analyzer. A DDA is 
a device or algorithm that linearly interpolates one or more 
variables across some range.
The algorithm we just wrote implements a DDA that 
interpolates one value (y) over a certain range (the x 
values).
It is relatively straightforward to interpolate more values over 
the same range when we look at Bresenham's in this way. 
Some interesting additional values to interpolate might be 
red, green, blue, and even alpha channels for drawing 
gradients.
With a little bit of cleverness DDAs can be used to draw 
triangles and even arbitrary polygons. Ask the TAs if you're 
curious.



Hardware Implementation Notes

See the lab guide for suggestions for interfacing with the 
CPU.
Make sure you can stall your line drawing engine!
For your design doc, considering dividing your design into 
a data-path and some sort of control (just like a processor!).
Your control logic will probably look like a simple FSM.



Acknowledgements

This lecture partially adapted from CS150 Spring 2010 
Lecture 16.

Check out these slides for examples of running the 
algorithm.


