
1

Lesson 09: SD Card Interface

1. Introduction

A Secure Data (SD) card is a data storage device that can be used as massive storage in an embedded system.

We will introduce a method to access data on a SD card using the Altera University Program (UP) SD Card IP

core. We will use the Media Computer as a sample system that utilizes this interface. Please refer to the Qsys

tool and the Media Computer documents for more information.

2. SD Card IP Core

The Altera University Program (UP) SD Card core is a hardware circuit that enables the use of an SD card on

the Altera DE-series boards [1]. The core has been designed for use in a Qsys-implemented system. The Media

Computer provided on the course’s syllabus page should already contain a SD Card core [2-3]. Please refer to

the Qsys tool to determine the base address for this core.

An SD card supports two operations modes: SD mode and SPI mode (serial peripheral interface). The SD mode

is a proprietary format and uses four lines for data transfer. SPI is an open standard for serial interfaces and is

widely used in embedded applications. The SD Card IP core configures the card at system’s

initialization/reset to communicate using the SPI mode.

Register Map:

The memory-mapped registers allow a program running on the Nios II processor to read the status of the SD

Card as well as send commands to it. The commands include reading, writing and erasing a block of data. When

a command to read a block of data is issued, the core reads a 512-byte block of data into a local memory

buffer. Once the data is stored in the buffer, the buffer can be read and written to using memory reads/writes

from a program.

The address offsets of the memory-mapped registers and the data buffer, relative to the starting address

specified by the designer in the Qsys tool, are listed in Table 1.

Registers listed in Table 1 are accessible by reading and/or writing data to the corresponding memory locations.

Registers CID, CSD, OCR, SR, and RCA are described in the SD Card Physical Layer Specification document

[4]. The meaning of bits in these registers is described there. Although these registers contain useful

information, users will primarily interface with an SD card using registers and buffers from the Altera IP Core

which include the CMD_ARG, CMD, and ASR registers, as well as the RXTX_BUFFER buffer.

The SD Card core abstracts the low-level SD card communication protocol using memory-mapped registers. It

can transfer data to and from an SD card requiring only that users wait for each transaction to be completed. To

facilitate this level of abstraction, the core uses three registers and a memory buffer.

2

Table 1. SD Card Core Register Map [1].

The Auxiliary Status Register (ASR) holds the status information for the core. The meaning of each bit is as

follows:

• bit 0 indicates if the last command sent to the core was valid.

• bit 1 indicates if an SD Card is present in the SD card socket.

• bit 2 indicates if the most recently sent command is still in progress.

• bit 3 indicates if the current state of the SD card Status Register is valid.

• bit 4 indicates if the last command completed due to a timeout.

• bit 5 indicates if the most recently received data contains errors.

Once the card is initialized by the core, it can be accessed by issuing various commands via the Command

Argument register (CMD_ARG) and the Command (CMD) registers. While the SD Card core supports a wide

array of SD card functions (see Appendix A), the most frequently used commands are READ_BLOCK and

WRITE_BLOCK.

Reading a Sector:

When a READ_BLOCK command is issued, the data from an SD card is read in 512 byte blocks known as

sectors. Once the block/sector is read, the RXTX_BUFFER can be accessed to read the data from that sector.

To execute the READ_BLOCK command, write the starting address of the block into the Command Argument

register (CMD_ARG). Then, write the READ_BLOCK command ID (0x11) to the Command register (CMD).

This sequence of events causes the SD Card core to read 1 sector (512 bytes) from the SD Card. When the

command completes execution, the requested data will be accessible via the RXTX_BUFFER.

Example: In this example, we first wait for the SD card to be connected to the SD card socket. Once a card is

detected, we proceed to read the sector 480 (481
th

 sector) on the SD card. The 481
th

 th sector begins on byte

246,272 and ends on byte 246,783. Note that when the command to read data from the SD card has been sent,

3

the program waits in a loop. This is because the operation may take some time and the data will not be available

immediately. It is necessary to wait until the ASR register indicates that the read operation has been completed.

//Base Addresses from DE2-70 Media Computer with SD
#define SD_CARD_BASE_ADR 0x10003400
#define JTAG_UART_BASE_ADR 0x10001000
#define READ_BlOCK 0x11
#define SECTOR 480

/* function prototype */
void put_JTAG_UART_string(char *);

int main(void)
{
 int *command_argument_register = (int *)(SD_CARD_BASE_ADR + 556);
 short int *command_register = (short int *)(SD_CARD_BASE_ADR + 560);
 short int *aux_status_register = (short int *)(SD_CARD_BASE_ADR + 564);
 volatile short int status;

 /* Wait for the SD Card to be connected to the SD Card Port. */
 status = (short int) *(aux_status_register);
 while ((status & 0x02) == 0)
 status = (short int) *(aux_status_register);

 /* print a message*/
 put_JTAG_UART_string ("\nCard connected.\0");

 /* Read a sector on the card */
 *(command_argument_register) = (SECTOR << 9); // sector’s starting address
 *(command_register) = READ_BlOCK; // read command to CMD register

 /* Wait until the operation completes. */
 status = ((short int) *(aux_status_register));
 while ((status & 0x04)!=0)
 status = ((short int) *(aux_status_register));

 /* print a message*/
 put_JTAG_UART_string ("\nRead sector operation completed.\0");

 return 0;
}
/* function to print a text string to the Terminal via JTAG UART */
void put_JTAG_UART_string(char * text_ptr)
{
 volatile int * JTAG_UART_ptr = (int *) JTAG_UART_BASE_ADR; // jtag_uart base address
 while (*(text_ptr))
 {
 if (*(JTAG_UART_ptr + 1) & 0xFFFF0000) // if WSPACE > 0,
 {
 *(JTAG_UART_ptr) = *(text_ptr);
 ++text_ptr;
 }
 }
}

4

Writing to a Sector:

Executing WRITE_BLOCK is performed in the same manner as executing READ_BLOCK command. However,

before the WRITE_BLOCK is executed, the RXTX_BUFFER must be filled with 512 bytes of data to be

written on the SD card. Once the buffer contains the desired data, write the destination address to the

CMD_ARG register (a multiple of 512 bytes as for the read command), and then write WRITE_BLOCK

command ID (0x18) to the CMD register.

IMPORTANT: An SD card is a flash memory device, and as such writing to it takes longer than reading data

from it. Also, each 512 block of data on an SD card can only be written a limited number of times (depending

on the SD card used, this number varies between 1000 and 100000 times), thus users should take care to write

to the SD card only when necessary.

Example: Write a C program that writes data to the 514th sector (sector 513) of the SD card. Remember to fill

the RXTX_BUFFER before writing operation.

//Base Addresses from DE2-70 Media Computer with SD
#define SD_CARD_BASE_ADR 0x10003400
#define JTAG_UART_BASE_ADR 0x10001000
#define READ_BLOCK 0x11
#define WRITE_BLOCK 0x18
#define SECTOR 513

/* function to print a text string to the Terminal via JTAG UART */
void put_JTAG_UART_string(char * text_ptr)
{
 // code shown in the previous example
}

int main(void)
{
 int *command_argument_register = (int *)(SD_CARD_BASE_ADR + 556);
 short int *command_register = (short int *)(SD_CARD_BASE_ADR + 560);
 short int *aux_status_register = (short int *)(SD_CARD_BASE_ADR + 564);
 volatile short int status,i;

 /* Wait for the SD Card to be connected to the SD Card Port. */
 status = (short int) *(aux_status_register);
 while ((status & 0x02) == 0)
 status = (short int) *(aux_status_register);

 /* print a message*/
 put_JTAG_UART_string ("\nCard connected.\0");

 /* fill up buffer before writing to SD card */

char* buffer = (char *) SD_CARD_BASE_ADR;
 for (i =0; i <512; ++i)
 buffer [i] = (char)(i & 0xFF);

5

3. Using Standard stdio.h Library

As we have seen in the previous examples, you will need to write your own function to display outputs in the

terminal. You will also have to write your own function to accept inputs from users via the terminal. This

process can be cumbersome.

The C compiler from the Altera Monitor Program supports standard C libraries. We will find it very useful to

utilize the stdio.h library to support input and output via the JTAG UART core. The two useful functions are the

printf() and scanf() functions. Some examples using these two functions are shown below. For more

information, look at the format, parameters and other examples of these functions in a C programming book or

an online references [5-6].

printf() examples [5]:

/* printf example */
#include <stdio.h>

int main()
{
 printf ("Characters: %c %c \n", 'a', 65);
 printf ("Decimals: %d \n", 1977);
 printf ("Preceding with blanks: %10d \n", 1977);
 printf ("Preceding with zeros: %010d \n", 1977);
 printf ("Some different radixes: %d %#x \n", 100, 100);
 printf ("floats: %4.2f %4.2f \n", 3.1416);
 printf ("%s \n", "A string");
 return 0;
}

Results:

 /* Write to a sector on the card */
 *(command_argument_register) = (SECTOR << 9); //sector’s starting address
 *(command_register) = WRITE_BLOCK; // write command to CMD register

 /* Wait until the operation completes. */
 status = ((short int) *(aux_status_register));
 while ((status & 0x04)!=0)
 status = ((short int) *(aux_status_register));

 /* print a message*/
 put_JTAG_UART_string ("\nWrite sector operation completed.\0");

 return 0;
}

6

Characters: a A

Decimal: 1977

Preceding with blanks: 1977

Preceding with zeros: 0000001977

Some different radixes: 100 0x64

float: 3.14

A string

scanf() examples [5]:

/* scanf example */
#include <stdio.h>

int main ()
{
 char str [80];
 int i;

 printf ("Enter your family name: ");
 scanf ("%s",str);
 printf ("Enter your age: ");
 scanf ("%d",&i);
 printf ("Mr. %s, %d years old.\n",str,i);
 printf ("Enter a hexadecimal number: ");
 scanf ("%x",&i);
 printf ("You have entered %#x (%d).\n",i,i);

 return 0;
}

Results:

Enter your family name: John

Enter your age: 29

Mr. John, 29 years old.

Enter a hexadecimal number: ff

You have entered 0xff (255).

4. FAT16 File System

FAT, which was developed by Microsoft, is the most widely used file system for SD cards. The FAT16 can

support storage sizes up to 4 GB. Files stored in the FAT16 file system can be read and written by almost all

computers and microcontrollers. Before the SD card can be used with a FAT16 file system, you will need to

format it.

Formatting an SD card with FAT16:

7

In the window explorer, right click on the SD card drive (i.e. E:\) and select Format. From the pop-up window,

select FAT (Default) as the File System. You can enter Volume label for the SD card (optional). Select Quick

Format if you don’t want to erase old data on the card.

FAT16 File System Structure

The basic layout of the SD card that has been formatted with FAT16 file system is shown below. More

information can be found in the references [7-9]. The layout without a Master Boot Record (MBR) is shown

below.

Boot

Reserved

FAT 1

FAT 2

Root Directory

Reserved Sectors

Cluster 2

Cluster 3

Cluster N

Data Area

Fig. 1. SD Card FAT16 file system layout without an MBR sector.

The Master Boot Record (MBR)

While some of the newer SD cards do not contain a MBR section as shown in Fig. 1, most cards do have this

section at the beginning (sector 0) of the cards as shown in Fig. 2 below. The layout of an SD card with an MBR

section is shown below.

Sector 0

Sector 8

Sector 244

Sector480

Sector512

Sector576

8

Boot

Reserved

FAT 1

FAT 2

Root Directory

Reserved Sectors

Cluster 2

Cluster 3

Cluster N

Data Area

Hidden

Sectors

MBR

One Partition

Fig. 2. SD Card FAT16 file system layout with an MBR sector.

The MBR section is located at the first sector (sector 0) of the SD card. The MBR contains information to locate

data partition(s) within the card. The basic layout of the MBR is shown in Table 1 below.

Each partition entry in the table above contains specific information about that partition. The basic layout for

each partition entry is shown in Table 2. Note that the offsets are calculated from the start of partition entry in

the MBR table above.

For our class, we can expect to have one partition in each SD card.

Sector 0

Same layout as in Fig. 1

9

Table 1. Layout of a Master Boot Record (MBR).

Offset (hex) Description Size

000 Executable code 446 Bytes

1BE Partition 1 entry 16 Bytes

1CE Partition 2 entry 16 Bytes

1DE Partition 3 entry 16 Bytes

1DE Partition 4 entry 16 Bytes

1FE
Executable marker
(0x55 and 0xAA)

2 Bytes

Table 2. Layout of one partition entry in the Master Boot Record (MBR).

Offset (hex) Description Size Comment

00 State 1 Byte 0x80 (active), 0x00 (inactive)

01 Start Head 1 Byte

02 Start Cylinder/Sector 2 Bytes Start Sector and Cylinder

04 Partition Type 1 Byte

0x01 = FAT12
0x04 = FAT16 (<32MB)
0x05 = Ex MSDOS
0x06 = FAT16 (>32 MB)
0x0B = FAT32

05 End Head 1 Byte

06 End Cylinder/Sector 2 Bytes End Sector and Cylinder

08 Start Sector 4 Bytes Start Sector of Partition 1

0C Partition Length 4 Bytes
Number of Sectors in the
Partition

The Boot Record

The Boot Record is located at the first sector of the partition (or sector 0 if an SD card does not have an MBR

section.) It contains important information about the card format, structure, etc. The basic layout of the Boot

Record is shown in Table 3 below [7]. Some of the most commonly used fields are highlighted below.

Note that the offset numbers are determined from the starting address of the Boot Record sector.

10

Table 3. Boot Record layout of a FAT16 file system [7].

Offset (hex) Description Size

00 Jump Code + NOP 3 Bytes

03 OEM Name 8 Bytes

0B Bytes Per Sector 2 Bytes

0D Sectors Per Cluster 1 Byte

0E Reserved Sectors 2 Bytes

10 Number of Copies of FAT 1 Byte

11 Maximum Root Directory Entries 2 Bytes

13
Number of Sectors in Partition Smaller
than 32MB

2 Bytes

15 Media Descriptor (F8h for Hard Disks) 1 Byte

16 Sectors Per FAT 2 Bytes

18 Sectors Per Track 2 Bytes

1A Number of Heads 2 Bytes

1C Number of Hidden Sectors in Partition 4 Bytes

20 Number of Sectors in Partition 4 Bytes

24 Logical Drive Number of Partition 2 Bytes

26 Extended Signature (29h) 1 Byte

27 Serial Number of Partition 4 Bytes

2B Volume Name of Partition 11 Bytes

36 FAT Name (FAT16) 8 Bytes

3E Executable Code 448 Bytes

1FE Executable Marker (0x55AA) 2 Bytes

Example: Write a C program to extract the eight data fields highlighted above from the Boot Record

sector.

#include <stdio.h>
//Base Addresses from DE2-70 Media Computer with SD
#define SD_CARD_BASE_ADR 0x10003400
#define JTAG_UART_BASE_ADR 0x10001000
#define READ_BlOCK 0x11 //read command
#define WRITE_BLOCK 0x18 //write command

11

typedef struct FAT16BootSector {
 unsigned short BytesPerSector;
 unsigned char SectorsPerCluster;
 unsigned short NumReservedSectors;
 unsigned char NumFATs;
 unsigned short MaxNumRootEntries;
 unsigned short TotalSectorsShort;
 unsigned short SectorsPerFAT;
 unsigned int TotalSectorsLong;
}FAT16BootSector;

/* function prototype */
void read_BootSector ();
void print_BootSector ();

/* global variable */
int *command_argument_register = (int *) (SD_CARD_BASE_ADR + 556);
short int *command_register = (short int *)(SD_CARD_BASE_ADR + 560);
short int *aux_status_register = (short int *)(SD_CARD_BASE_ADR + 564);
volatile short int status;
FAT16BootSector Entry; // structure to store the Boot Record information

/* main function */
int main(void)
{
 /* Wait for the SD Card to be connected to the SD Card Port. */
 status = (short int) *(aux_status_register);
 while ((status & 0x02) == 0)
 status = (short int) *(aux_status_register);

 /* print a message*/
 printf ("\nCard connected.\0");

 /* call function to read Boot sector*/
 read_BootSector();

 /* call function to print Boot sector*/
 print_BootSector();

 return 0;
}

12

void print_BootSector ()
{
 printf ("\n Bytes Per Sector: %08d", Entry.BytesPerSector);
 printf ("\n Sectors Per Cluster: %08d", Entry.SectorsPerCluster);
 printf ("\n Num of Reserved Sector: %08d", Entry.NumReservedSectors);
 printf ("\n Num of FATs: %08d", Entry.NumFATs);
 printf ("\n Max Num of Root Entries: %08d", Entry.MaxNumRootEntries);
 printf ("\n Total Sectors (short): %08d", Entry.TotalSectorsShort);
 printf ("\n Sectors Per FAT: %08d", Entry.SectorsPerFAT);
 printf ("\n Total Sectors (long): %08d", Entry.TotalSectorsLong);
}
/* function to read the Boot Record at sector 0 (without MBR section) */
void read_BootSector ()
{
 char *byte; short *dbyte; int * word;

 /* Read a sector 0 on the card */
 *(command_argument_register) = (0 << 9); // starting address
 *(command_register) = READ_BLOCK; // write command to CMD register

 /* Wait until the operation is completed. */
 status = ((short int) *(aux_status_register));
 while ((status & 0x04)!=0) status = ((short int) *(aux_status_register));

 /* Populate Boot Entry structure */
 byte = (SD_CARD_BASE_ADR + 0x0B); // Bytes per Sector
 Entry.BytesPerSector = *byte + (*(byte +1) << 8);

 byte = (SD_CARD_BASE_ADR + 0x0D); // Sector per Cluster
 Entry.SectorsPerCluster = *byte;

 dbyte = (SD_CARD_BASE_ADR + 0x0E); // No of Reserved Sectors
 Entry.NumReservedSectors = *dbyte;

 byte = (SD_CARD_BASE_ADR + 0x10); // No of FATs
 Entry.NumFATs = *byte;

 byte = (SD_CARD_BASE_ADR + 0x11); // Max Num of Root Entries

 Entry.MaxNumRootEntries = *byte + (*(byte +1) << 8);

 byte = (SD_CARD_BASE_ADR + 0x13); // Total Sectors (short)
 Entry.TotalSectorsShort = *byte + (*(byte +1) << 8);

 dbyte = (SD_CARD_BASE_ADR + 0x16); // Sectors per FAT
 Entry.SectorsPerFAT = *dbyte;

 word = (SD_CARD_BASE_ADR + 0x20); // Total Sectors (long)
 Entry.TotalSectorsLong = *word;
}

13

A screenshot of the execution of the example above is shown below.

Fig. 3. Results of a program to read the Boot Record information.

The File Allocation Tables (FAT1 and FAT2)

When a file is saved on an SD card with FAT16 file system, it is divided into one or more data clusters (size of

a cluster can be defined when an SD card is formatted). In the example shown in Fig. 3, the cluster size is 64

sectors = (64 × 512) = 32768 bytes. From an application program’s point of view, a file is a linear contiguous

storage space in which data are accessed sequentially. But that may not be the case at the physical level. A large

file may be divided and stored in many clusters that may or may not be continuous in storage space. They are

connected in a linked-list like manner. A conceptual view of file stored in a FAT16 file system is shown in

Fig. 4. In this illustration, myfile.txt file is allocated to clusters 4, 5, 8, and 9. Each cluster has an entry in the

File Allocation Table (FAT) that indicates to next cluster in the file.

myfile.txt

data data data data data data

Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 Cluster 9

Fig. 4. A conceptual view of myfile.txt file stored with FAT16 file system [10].

14

There are normally two identical FAT tables to prevent data corruption in the FAT tables. The starting sector of

FAT1 table is located at the first sector after the Reserved Sectors (see Fig. 2 and Fig. 3).

Question: What is starting sector of FAT1 based on the Boot Record shown in Fig. 3?

Since there are 8 reserved sectors, the first sector after the reserved sector is sector 8.

The starting sector of FAT2 is located at the first sector after the FAT1 table (see Fig. 2 and Fig. 3).

Question: What is the sector number of the starting sector of FAT2?

Since there are 236 sectors in a FAT table,

 Starting sector of FAT2 = 8 + 236 = sector 244

Each cluster is identified by a 2-byte cluster entry in the FAT table. The first two clusters are not used

(and always 0xF8FF and 0xFFFF). Data area starts with cluster 2.

 Important facts:

 A 0x0000 in the FAT entry indicates that the cluster does not contain data.

 A 0xFFFF in in the FAT entry indicates that this is the last entry in the linked list (no cluster in after this

one).

 Any other numbers in in the FAT entry indicates the next cluster in the linked list.

 Clusters 0 and 1 are not used (always 0xF8FF and 0xFFFF).

A portion of the memory layout of first sector in FAT1 is shown below. Note that all entries (except the first

two clusters) contain 0s. This means that the SD card does not contain any files (empty SD card).

Fig. 5. A portion of FAT1 layout of an empty SD card.

A portion of the memory layout of first sector in FAT1 of another SD card is shown below. Note that this SD

card contains data files as indicated by the entries in the FAT table.

15

Fig. 6. A portion of FAT1 layout of an SD card that contains data files.

Question: What is the next cluster in the cluster chain that has cluster 2?

 0xFFFF indicates that cluster 2 is the last cluster in the chain.

Question: What is the next cluster in the cluster chain that starts with cluster 7?

 Cluster 8 Note that data are stored with little endian order (least significant byte first).

Question: List all clusters in the chain that starts with cluster 7.

Clusters 7 8 9 10

Question: What would a FAT1 table look like if the SD card contains only myfile.txt file as shown in Fig. 4.

Recall that myfile.txt file is allocated to clusters 4, 5, 8, and 9. Blank cells contain 0x00.

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

1000 F8 FF FF FF

1010

1020

The Root Directory

The Root Directory contains the file structure of the SD card. The Root Directory is located at the first sector

after the last FAT table.

Question: What is the starting sector of the Root Directory?

There are 236 sectors in a FAT table and FAT2 starts at sector 244. So, the starting sector of the

Root Directory is

 244 + 236 = sector 480

16

Each file or folder is described with a 32-byte entry in the Root Directory. The layout of each entry is shown in

the table below. Note that the offset numbers are determined based on the starting address of the Root

Directory.

Table 4. Layout of an entry in the Root Directory [7].

Offset (hex) Description Size Comment

00 DOS Filename 8 Bytes ASCII code

08 DOS File Extension 3 Bytes ASCII code

0B File Attributes 1 Byte

0C NT Case Info 1 Byte

0D Create Time (ms) 1 Byte 10ms Units

0E
Create Time
(Hrs/Mins/Secs)

2 Bytes
Hrs: bits 15:11
Mins: bits 10:5
Secs: bits 4:0

10
Create Date
(Yr/Mo/Da)

2 Bytes
Yr: bits 15:9 (offset = 1980)
Mo: bits 8:5
Da: bits 4:0

12 Last Access Date 2 Bytes Same format as offset 0x10

14
File / Folder
Start Cluster (High)

2 Bytes Only used in FAT32 Systems

16 Last Modified Time 2 Bytes Same format as offset 0x0E

18 Last Modified Date 2 Bytes Same format as offset 0x10

1A
File / Folder
Start Cluster (Low)

2 Bytes

1C File Size (Bytes) 4 Bytes
Folders will have a File Size of
0x0000

Question: How many sectors does Root Directory contain? Use information from the Boot Record shown in

Fig. 3.

The maximum number of entries in the Root Directory: 512

Each root entry has 32 bytes.

Each sector has 512 bytes.

So,

 512 x 32/512 = 32 sectors in the Root Directory

17

The Data Area

The Data Area is located right after the Root Directory. Files are stored in clusters as discussed earlier. Cluster

size can be configured when the SD card is formatted. For example, the SD card shown in Fig. 3 contains

clusters that are 64-sector long. Again, cluster 2 is the first valid cluster right after the Root Directory (cluster 0

and 1 are not available).

Question: What is the starting sector of the cluster 2 (first cluster in the Data Area)? Use information from the

Boot Record shown in Fig. 3.

 480 + 32 = sector 512

Question: What is the starting sector of the cluster 3 (second cluster in the Data Area)? Use information from

the Boot Record shown in Fig. 3.

 512 + 64 = sector 576

5. References

[1] Altera, “Altera University Program Secure Data Card IP Core”, for Quartus II v.13.0, May 2013.
[2] Altera, “Media Computer System for the Altera DE2-70 Board,” for Quartus II v.13.0, May 2013.

[3] Altera, “Media Computer System for the Altera DE2 Board,” for Quartus II v.13.0, May 2013.

[4] SD Group and SD Card Association, “SD Specifications Part 1: Physical Layer Simplified Specification,”

ver. 1.10, April 2006.

[5] http://www.cplusplus.com/reference/cstdio/printf/

[6] http://www.cplusplus.com/reference/cstdio/scanf/

[7] http://home.teleport.com/~brainy/fat16.htm

[8] http://en.wikipedia.org/wiki/File_Allocation_Table

[9] http://pjgcreations.blogspot.com/2011/03/fat16-file-system-with-sd-cards.html

[10] Chu, Embedded SoPC Design With Nios II Processor and VHDL Examples, John Wiley and Sons

Inc., 2011.

http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/scanf/
http://home.teleport.com/~brainy/fat16.htm
http://en.wikipedia.org/wiki/File_Allocation_Table
http://pjgcreations.blogspot.com/2011/03/fat16-file-system-with-sd-cards.html

18

APPENDIX A – SD Card Commands

Supported SD Card Commands [1].

19

