Technical note

Calibration procedure for a resistive touchscreen system based on the STMPE811

Introduction

This document describes the calibration procedures for a resistive touchscreen system based on the STMPE811 8-bit port expander with advanced touchscreen controller. The system consists of a screen to display information to the user, and a touch sensor panel controlled by the STMPE811 to detect and define the location of a touch event. Each component has its own resolution and independent coordinate system.

It may not be possible to use the touch coordinates produced by the touchpanel directly as the screen coordinates. This is because typically there is a mismatch between the two coordinate systems caused by factors such as mechanical placement error, scale difference, or the series resistance of the tracks connecting the touchpanel and its driver IC.

A set of transfer functions must be used to convert the touchpanel coordinates to the screen coordinates. The constants of the functions are defined during the calibration process.

Contents

1 2-constants calibration 3
2 3-constants calibration 7
3 Revision history 12

1

2-constants calibration

2-constants calibration only corrects misalignment on the X and Y axes, both scaling factor and offset. Angle misalignment is not corrected. This type of calibration is suitable when the angle error is negligible (small screen) and a simple calculation is required. The procedure for 2 -constants calibration is quite straightforward.

Figure 1. Mismatch which can be corrected with 2-constants calibration

Point A in Figure 1 is located at coordinate $(3,3)$ on the touchpanel, but on the screen it is located at coordinate (1.6,1.4). This condition can be corrected using the following transfer function:

Equation 1

$$
Y_{D}=a Y+b
$$

Equation 2

$$
X_{D}=c X+d
$$

Where:

- $\quad Y_{D}$ is the screen's Y value
- $\quad X_{D}$ is the screen's X value
- Y is the touchpanel's Y value
- X is the touchpanel's X value
- a, b, c, d are the transfer function parameters

The two unknowns in both equations can be resolved by choosing two points and defining them on the screen. For an example, please refer to Figure 2.

Figure 2. Example of calibration points

The calibration points are described in Table 1 below:
Table 1. 2-constants calibration points

Point	$\mathbf{X}_{\mathbf{D}}$	$\mathbf{Y}_{\mathbf{D}}$
1	1	3
2	1	1
3	5	1
4	5	3

After the user touches the points on the touchpanel, the panel coordinates are as shown in Table 2, assuming there is some variation in touch locations.

Table 2. Input from touchpanel for defined points

Point	\mathbf{X}	\mathbf{Y}
1	1.8	6.3
2	1.85	2.3
3	9.75	2.2
4	9.8	6.35

Only two points are required to solve the equations, but it is recommended to perform the equations twice and use an average of the results.

In this illustration, there are two groups of equations to be solved. Group 1 is defined as follows:

Equation 3

$$
Y_{D}=a_{1} Y+b_{1}
$$

Equation 4

$$
X_{D}=c_{1} X+d_{1}
$$

To solve these equations, points 1 and 3 are used:

- Y axis

Equation 5

$$
\begin{aligned}
& \binom{Y_{D 1}}{Y_{D 3}}=\binom{a_{1}}{b_{1}}\left(\begin{array}{ll}
Y_{1} & 1 \\
Y_{3} & 1
\end{array}\right) \\
& \binom{3}{1}=\binom{a_{1}}{b_{1}}\left(\begin{array}{ll}
6.3 & 1 \\
2.2 & 1
\end{array}\right)
\end{aligned}
$$

Solving the matrix results in a1 $=0.487$ and b1 $=-0.073$

- X axis

Similarly, the results are c1 $=0.503$ and d1 $=0.095$
Group 2 is defined as follows:

Equation 6

$$
Y_{D}=a_{2} Y+b_{2}
$$

Equation 7

$$
X_{D}=c_{2} X+d_{2}
$$

Point 2 and 4 are used to solve these equations:

- Y axis

Solving the equation:

Equation 8

$$
\mathrm{a} 2=0.494 \text { and b2 }=-0.136
$$

- X axis

Solving the equation:

Equation 9

$$
\mathrm{c} 2=0.497 \text { and d2 }=0.130
$$

At this point, take an average of the results from the two groups of equations, and this is the final result of the calibration.

Table 3. Final calibration result using the average of the two point groups

Parameter	$\mathbf{1}$	$\mathbf{2}$	Average
a	0.487	0.494	0.4905
b	-0.073	-0.136	-0.1045
c	0.503	0.497	0.5
d	0.095	0.130	0.1125

Hence, the transfer functions from the touchpanel coordinates to the display coordinates are:

$$
\begin{aligned}
& Y_{D}=0.4905 X-0.1045 \\
& X_{D}=0.5 X+0.1125
\end{aligned}
$$

The points chosen for calibration should be capable of representing the entire screen area. The recommended positions are the corners of the screen, but not too close to the center of the screen or the borders of the touchpanel. Choosing calibration points too close to the center results in poor representation of the areas further away from the center. However, if the points are too near the edges, any mechanical imperfections present in the panel may affect the result of the calibration.

It is recommended to use points located at 20% and 80% of the X and Y axes, as shown in Figure 3 below.

Figure 3. Recommended calibration point positions: 20\% and 80% of X and Y axes

2 3-constants calibration

This method of calibration corrects misalignment of the X and Y axes, as well as angle misalignment. Figure 4 shows an illustration of mechanical misalignment.

Figure 4. Mechanical placement error which includes angle error

Mathematical expressions can be derived from Figure 4. They are:

Equation 10

$$
(X, Y)=[R \cos \theta, R \sin \theta]
$$

Equation 11

$$
\left(X_{D}, Y_{D}\right)=\left[R_{D} \cos (\theta-\Delta \theta), R_{D} \sin (\theta-\Delta \theta)\right]
$$

Introducing a scale difference between the panel and the display, we have:

Equation 12

$$
\left(X_{D}, Y_{D}\right)=\left[K_{X} R \cos (\theta-\Delta \theta), K_{Y} R \sin (\theta-\Delta \theta)\right]
$$

If an error is introduced in the X and Y axis (represented by X_{T} and Y_{T}) of Equation 12, the resulting equation is:

Equation 13

$$
\left(X_{D}, Y_{D}\right)=\left[K_{X} R \cos (\theta-\Delta \theta)+X_{T}, K_{Y} R \sin (\theta-\Delta \theta)+Y_{T}\right]
$$

Using trigonometric identity with the assumption that $\Delta \theta \rightarrow 0$, the result is:

Equation 14

$$
\begin{aligned}
& \cos (\theta-\Delta \theta)=\cos \theta+\Delta \theta \sin \theta \\
& \sin (\theta-\Delta \theta)=\Delta \theta \cos \theta-\sin \theta
\end{aligned}
$$

and Equation 13 can be modified to:

Equation 15

$$
X_{D}=K_{X} R \cos \theta+K_{X} R \Delta \theta \sin \theta+X_{T}
$$

Equation 16

$$
Y_{D}=K_{Y} R \Delta \theta \cos \theta-K_{Y} R \sin \theta+Y_{T}
$$

To simplify the equations, Equation 15 and 16 can be rewritten as:

Equation 17

$$
X_{D}=A X+B Y+C
$$

Equation 18

$$
Y_{D}=D X+E Y+F
$$

It is clear that to solve Equation 17 and 18, at least 3 points are required. The points used must be independent of each other (not in a straight line).

The 3 independent points chosen are illustrated in Figure 5. The coordinate (XDn,YDn) contain the chosen points of the screen coordinate, while (Xn, Yn) represents the user's input on the touchpanel corresponding to the points displayed on the screen.

Figure 5. Example of 3 independent points

The matrix representation is as follows:

Equation 19

$$
\left(\begin{array}{l}
X_{D 1} \\
X_{D 2} \\
X_{D 3}
\end{array}\right)=\left(\begin{array}{lll}
X_{1} & Y_{1} & 1 \\
X_{2} & Y_{2} & 1 \\
X_{3} & Y_{3} & 1
\end{array}\right) \times\left(\begin{array}{l}
A \\
B \\
C
\end{array}\right)
$$

Equation 20

$$
\left(\begin{array}{l}
Y_{D 1} \\
Y_{D 2} \\
Y_{D 3}
\end{array}\right)=\left(\begin{array}{lll}
X_{1} & Y_{1} & 1 \\
X_{2} & Y_{2} & 1 \\
X_{3} & Y_{3} & 1
\end{array}\right) \times\left(\begin{array}{l}
D \\
E \\
F
\end{array}\right)
$$

The unknown can be calculated using the equations that follow.

Equation 21

$$
\left(\begin{array}{l}
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{C}
\end{array}\right)=\boldsymbol{M}^{-1}\left(\begin{array}{l}
\mathrm{X}_{\mathrm{D} 1} \\
\mathrm{X}_{\mathrm{D} 2} \\
\mathrm{X}_{\mathrm{D} 3}
\end{array}\right)
$$

Equation 22

$$
\left(\begin{array}{l}
D \\
E \\
F
\end{array}\right)=M^{1}\left(\begin{array}{l}
Y_{D 1} \\
Y_{D 2} \\
Y_{D 3}
\end{array}\right)
$$

where

$$
\boldsymbol{m}=\left(\begin{array}{lll}
\mathrm{X}_{1} & \mathrm{Y}_{1} & 1 \\
\mathrm{X}_{2} & \mathrm{Y}_{2} & 1 \\
\mathrm{X}_{3} & \mathrm{Y}_{3} & 1
\end{array}\right)
$$

and

$$
\boldsymbol{M}^{-1}=\frac{1}{\operatorname{det}(\boldsymbol{M})} \operatorname{Adj}(\boldsymbol{M})
$$

To increase accuracy, more points can be used to solve the equation. An example 5-point calibration is shown below. Similar to 3-point calibration, a matrix representation is formed:

Equation 23

$$
\left(\begin{array}{l}
\mathrm{X}_{\mathrm{D} 1} \\
\mathrm{X}_{\mathrm{D} 2} \\
\mathrm{X}_{\mathrm{D} 3} \\
\mathrm{X}_{\mathrm{D} 4} \\
\mathrm{X}_{\mathrm{D} 5}
\end{array}\right)=\boldsymbol{M} \times\left(\begin{array}{l}
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{C}
\end{array}\right)
$$

Equation 24

$$
\left(\begin{array}{l}
Y_{D 1} \\
Y_{D 2} \\
Y_{D 3} \\
Y_{D 4} \\
Y_{D 5}
\end{array}\right)=\boldsymbol{M} \times\left(\begin{array}{l}
D \\
E \\
F
\end{array}\right)
$$

where

$$
\boldsymbol{m}=\left(\begin{array}{lll}
\mathrm{X}_{1} & \mathrm{Y}_{1} & 1 \\
\mathrm{X}_{2} & \mathrm{Y}_{2} & 1 \\
\mathrm{X}_{3} & \mathrm{Y}_{3} & 1 \\
\mathrm{X}_{4} & \mathrm{Y}_{4} & 1 \\
\mathrm{X}_{5} & \mathrm{Y}_{5} & 1
\end{array}\right)
$$

Equation 23 and 24 are solved by multiplying both sides by $\left(M^{\top} x M\right)-1 \times M^{\top}$ to get:

Equation 25

$$
\left(\begin{array}{l}
\mathrm{A} \\
\mathrm{~B} \\
\mathrm{C}
\end{array}\right)=\left(\boldsymbol{M}^{\top} \times \boldsymbol{m}\right)^{-1} \times \boldsymbol{M}^{\top} \times\left(\begin{array}{l}
\mathrm{X}_{\mathrm{D} 1} \\
\mathrm{X}_{\mathrm{D} 2} \\
\mathrm{X}_{\mathrm{D} 3} \\
\mathrm{X}_{\mathrm{D} 4} \\
\mathrm{X}_{\mathrm{D} 5}
\end{array}\right)
$$

Equation 26

$$
\left(\begin{array}{l}
D \\
E \\
F
\end{array}\right)=\left(\boldsymbol{M}^{\top} \times \boldsymbol{M}\right)^{-1} \times \boldsymbol{M}^{\top} \times\left(\begin{array}{c}
Y_{D 1} \\
Y_{D 2} \\
Y_{D 3} \\
Y_{D 4} \\
Y_{D 5}
\end{array}\right)
$$

To simplify, the values of the unknowns are calculated as follows:

Equation 27

$$
\begin{aligned}
& \mathrm{A}=\mathrm{d}_{\mathrm{X} 1} / \mathrm{d} \\
& \mathrm{~B}=\mathrm{d}_{\mathrm{X} 2} / \mathrm{d} \\
& \mathrm{C}=\mathrm{d}_{\mathrm{X} 3} / \mathrm{d} \\
& \mathrm{D}=\mathrm{d}_{\mathrm{Y} 1} / \mathrm{d} \\
& \mathrm{E}=\mathrm{d}_{\mathrm{Y} 2} / \mathrm{d} \\
& \mathrm{~F}=\mathrm{d}_{\mathrm{Y} 3} / \mathrm{d}
\end{aligned}
$$

where

Equation 28

$$
\begin{aligned}
& d=5 \times\left(\alpha \times \beta-\chi^{2}\right)+2 \times \chi \times \varepsilon \times \phi-\alpha \times \phi^{2}-\beta \times \varepsilon^{2} \\
& \mathrm{~d}_{\mathrm{x} 1}=5 \times\left(\mathrm{k}_{\mathrm{x}} \times \beta-\mathrm{I}_{\mathrm{x}} \chi\right)+\phi \times\left(\mathrm{I}_{\mathrm{x}} \times \varepsilon-\mathrm{k}_{\mathrm{x}} \times \phi\right)+\mathrm{m}_{\mathrm{x}} \times(\chi \times \phi-\beta \times \varepsilon) \\
& \mathrm{d}_{\mathrm{X} 2}=5 \times\left(\mathrm{I}_{\mathrm{X}} \times \alpha-\mathrm{k}_{\mathrm{X}} \times \chi\right)+\varepsilon \times\left(\mathrm{k}_{\mathrm{X}} \times \phi-\mathrm{I}_{\mathrm{X}} \times \varepsilon\right)+\mathrm{m}_{\mathrm{X}} \times(\chi \times \varepsilon-\alpha \times \phi) \\
& \mathrm{d}_{\mathrm{X} 3}=\mathrm{k}_{\mathrm{X}} \times(\chi \times \phi-\beta \times \varepsilon)+\mathrm{l}_{\mathrm{X}} \times(\chi \times \varepsilon-\alpha \times \phi)+\mathrm{m}_{\mathrm{X}} \times\left(\alpha \times \beta-\chi^{2}\right) \\
& d_{Y 1}=5 \times\left(k_{Y} \times \beta-l_{Y} \chi\right)+\phi \times\left(l_{Y} \times \varepsilon-k_{Y} \times \phi\right)+m_{Y} \times(\chi \times \phi-\beta \times \varepsilon) \\
& \mathrm{d}_{\mathrm{Y} 2}=5 \times\left(\mathrm{l}_{Y} \times \alpha-\mathrm{k}_{\mathrm{Y}} \times \chi\right)+\varepsilon \times\left(\mathrm{k}_{\mathrm{Y}} \times \phi-\mathrm{I}_{\mathrm{Y}} \times \varepsilon\right)+\mathrm{m}_{\mathrm{Y}} \times(\chi \times \varepsilon-\alpha \times \phi) \\
& d_{Y 3}=k_{Y} \times(\chi \times \phi-\beta \times \varepsilon)+l_{Y} \times(\chi \times \varepsilon-\alpha \times \phi)+m_{Y} \times\left(\alpha \times \beta-\chi^{2}\right) \\
& \alpha=\sum_{k=1}^{5} X_{k}^{2} \quad \beta=\sum_{k=1}^{5} Y_{k}^{2} \quad \chi=\sum_{k=1}^{5} X_{k} \times Y_{k} \quad \varepsilon=\sum_{k=1}^{5} X_{k} \quad \phi=\sum_{k=1}^{5} Y_{k} \\
& \mathrm{k}_{\mathrm{X}}=\sum_{\mathrm{k}=1}^{5} \mathrm{X}_{\mathrm{k}} \times \mathrm{X}_{\mathrm{Dk}} \quad \mathrm{I}_{\mathrm{X}}=\sum_{\mathrm{k}=1}^{5} \mathrm{Y}_{\mathrm{k}} \times \mathrm{X}_{\mathrm{Dk}} \quad \mathrm{~m}_{\mathrm{X}}=\sum_{\mathrm{k}=1}^{5} \mathrm{X}_{\mathrm{Dk}} \quad \mathrm{k}_{\mathrm{Y}}=\sum_{\mathrm{k}=1}^{5} \mathrm{X}_{\mathrm{k}} \times \mathrm{Y}_{\mathrm{Dk}} \\
& I_{Y}=\sum_{k=1}^{5} Y_{k} \times Y_{D k} \quad m_{Y}=\sum_{k=1}^{5} Y_{D k}
\end{aligned}
$$

The recommended points to use in 5-point calibration are shown in Figure 6.
Figure 6. Recommended point locations for 5-point calibration

3 Revision history

Table 4. Document revision history

| Date | Revision | Changes |
| :---: | :---: | :--- | :--- |
| 26-Jan-2009 | 1 | Initial release. |

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.
All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

