
Error detection using CRC

The goal of this task is to become familiar with functional principles of CRC (Cyclic

Redundancy Check):

- math background

- error detection features

- practical implementation

CRC is a redundant data evaluated from original information data (that we want to make

secure). CRC is sent together with original data and evaluated again at the receiver site. If the

newly evaluated and received CRCs differ, there is an error in the received data. If both CRCs

are the same, we expect the data were received correctly. Nevertheless it exists small but non-

zero probability, that the received data are incorrect.

Transmitted data bit sequence can be interpreted as a polynomial with binary coefficients.

Binary sequence 11000101 can thus be represented by a binary polynomial x
7
⊕x

6
⊕x

2
⊕1.

CRC is evaluated as an reminder after the division of the data polynomial by so called

generating polynomial. During the evaluation modulo 2 addition is applied (1⊕1 = 0).

CRC definition by the generating polynomial is ambiguous – different byte order or

additional bit sequences are added before or after the data:

- sometimes bit 1 is added before data

- sometimes the sequence of N zero bits (N is degree of the generating polynomial) is

appended after the data sequence and CRC is evaluated. At the receiver side the CRC

evaluated from the sequence consisting of received data + CRC is then always zero

(no errors are expected).

The number mentioned after the CRC letters usually specifies generating polynomial degree,

e.g. CRC5 means that generating polynomial degree is 5 (x
5
 +… +1) and maximum degree of

the remainder polynomial is then 4 (representing sequence of 5 bits).

1. Learn the CRC principle from the attached material.

2. Open the Matlab and the simulation schema in Fig. 1 (Plocha/crc/crc1.mdl)

- Define the data frame with length 8 – 12 bits and store it in block Frame,

- choose simple CRC polynomial (e.g. CRC-3, CRC-4) and store it in CRC Generator

and CRC Syndrome Detector blocks,

- define variables frame_length and CRC_degree in the Matlab workspace and assign

them values respecting the data frame length and generating polynomial degree,

- evaluate CRC of data frame using selected generating polynomial,

- Error vector block is used to generate errors. First try no error transmission, i.e.

000……0. Error vector length is defined as a sum of data frame length and

generating polynomial degree (Attention – do not exchange degree of polynomial

and its length),

- check the correct function of CRC using presentation blocks.

3. Using simulation check the following CRC functionality (all relevant error vectors, where

it is possible):

− if the error vector is linear shift of generating polynomial (g(x) multiplied by x
n
,

n = 0, 1, …), error is not detected

− more generally; if the error vector is divisible by g(x) without reminder, error is not

detected

− each single bit error is detected, if generating polynomial g(x) = x
n
⊕1, n = 1, 2, …

− if generating polynomial g(x) is divisible by (x⊕1) without reminder, each error

vector with odd number of bit errors is detected

− if all the polynomials p(x) = x
i
⊕1, i = 1, 2, … n-1, n is a length of codeword, are

not divisible by generating polynomial g(x), all double bit errors are detected

− if the error vector e(x) = x
j
(x

t
⊕ … ⊕1), t < degree of g (x) – block error of length t,

such error is always detected

4. Try to prove the hypothesis above as well as other two following:

− if the error vector is the block error of length n: e(x) = x
j
(x

t
⊕ … ⊕1), t = n = degree

of g (x), the probability that such an error will not be detected is 2
-(n-1)

− if the error vector is the block error of length higner than n, n = degree of g (x), the

probability that such an error will not be detected is 2
-n

5. Prepare the data transmission schema according to Figure 2 in Simulink. Bernoulli Binary

Generator generates random binary sequence. Binary Symmetric Channel generates bit

errors with predefined bit error probability (use e.g. 0.1‰, 1‰ a 1%). Find the probability

of random event, that the error in codeword will not be detected (there will be received

erroneous frame with correct CRC check).

6. Try to estimate the same probability of the same channel using the above mentioned rules.

Compare the estimation with measurements.

CRC Evaluation

Data: 10011101 represented as x
7
⊕x

4
⊕x

3
⊕x

2
⊕1

Generating polynomial: g(x) = x
3
⊕x⊕1 (CRC3)

First the data are shifted left by the g(x) degree (multiplied by x
3
: x

7
 → x

10
 …). Then the data

polynomial is divided by generating polynomial g(x). The reminder is the evaluated CRC.

x
10
⊕x

7
⊕x

6
⊕x

5
⊕x

3
 : x

3
⊕x⊕1 = x

7
⊕x

5
⊕1

x
10
⊕x

8
⊕x

7

 x
8
⊕x

6
⊕x

5
⊕x

3

 x
8
⊕x

6
⊕x

5

 x
3

 x
3
⊕x⊕1

 x⊕1

CRC length equals to the degree of generating polynomial. In our case the reminder after

division is 0*x
2
⊕1*x⊕1, resulting CRC is then 011.

Transmitted bit sequence is then 10011101011, represented by x
10
⊕x

7
⊕x

6
⊕x

5
⊕x

3
⊕x⊕1

CRC checking is shown below:

x
10
⊕x

7
⊕x

6
⊕x

5
⊕x

3
⊕x⊕1 : x

3
⊕x⊕1 = x

7
⊕x

5
⊕1

x
10
⊕x

8
⊕x

7

 x
8
⊕x

6
⊕x

5
⊕x

3
⊕x⊕1

 x
8
⊕x

6
⊕x

5

 x
3
⊕x⊕1

 x
3
⊕x⊕1

 0

Reminder is 0, no error is detected.

Name Polynomial

CRC-1 x + 1 (most hardware; also known as parity bit)

CRC-3 x^3 + x + 1

CRC-4-ITU x^4 + x + 1 (ITU-T G.704, p. 12)

CRC-5-EPC x^5 + x^3 + 1 (Gen 2 RFID[15])

CRC-5-ITU x^5 + x^4 + x^2 + 1 (ITU-T G.704, p. 9)

CRC-5-USB x^5 + x^2 + 1 (USB token packets)

CRC-6-ITU x^6 + x + 1 (ITU-T G.704, p. 3)

CRC-7 x^7 + x^3 + 1 (telecom systems, ITU-T G.707, ITU-T G.832, MMC, SD)

CRC-8-CCITT x^8 + x^2 + x + 1 (ATM HEC), ISDN Header Error Control and Cell Delineation ITU-T I.432.1 (02/99)

CRC-8-Dallas/Max^im x^8 + x^5 + x^4 + 1 (1-Wire bus)

CRC-8 x^8 + x^7 + x^6 + x^4 + x^2 + 1

CRC-8-SAE J1850 x^8 + x^4 + x^3 + x^2 + 1

CRC-8-WCDMA x^8 + x^7 + x^4 + x^3 + x + 1[16]

CRC-10 x^10 + x^9 + x^5 + x^4 + x + 1 (ATM; ITU-T I.610)

CRC-11 x^11 + x^9 + x^8 + x^7 + x^2 + 1 (FlexRay[17])

CRC-12 x^12 + x^11 + x^3 + x^2 + x + 1 (telecom systems[18][19])

CRC-15-CAN x^15 + x^14 + x^10 + x^8 + x^7 + x^4 + x^3 + 1

CRC-16-IBM x^16 + x^15 + x^2 + 1 (Bisync, Modbus, USB, ANSI X3.28, many others; also known as CRC-16 and CRC-16-ANSI)

CRC-16-CCITT x^16 + x^12 + x^5 + 1 (X.25, HDLC, XMODEM, Bluetooth, SD, many others; known as CRC-CCITT)

CRC-16-T10-DIF x^16 + x^15 + x^11 + x^9 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 (SCSI DIF)

CRC-16-DNP x^16 + x^13 + x^12 + x^11 + x^10 + x^8 + x^6 + x^5 + x^2 + 1 (DNP, IEC 870, M-Bus)

CRC-16-DECT x^16 + x^10 + x^8 + x^7 + x^3 + 1 (cordless telephones)[21]

CRC-24 x^24 + x^22 + x^20 + x^19 + x^18 + x^16 + x^14 + x^13 + x^11 + x^10 + x^8 + x^7 + x^6 + x^3 + x + 1 (FlexRay[17])

CRC-24-Radix^-64 x^24 + x^23 + x^18 + x^17 + x^14 + x^11 + x^10 + x^7 + x^6 + x^5 + x^4 + x^3 + x + 1 (OpenPGP)

CRC-30 x^30 + x^29 + x^21 + x^20 + x^15 + x^13 + x^12 + x^11 + x^8 + x^7 + x^6 + x^2 + x + 1 (CDMA)

CRC-32-IEEE 802.3 x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 + x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1 (V.42, Ethernet, MPEG-2, PNG[22], POSIX cksum)

CRC-32C (Castagnoli) x^32 + x^28 + x^27 + x^26 + x^25 + x^23 + x^22 + x^20 + x^19 + x^18 + x^14 + x^13 + x^11 + x^10 + x^9 + x^8 + x^6 + 1 (iSCSI & SCTP, G.hn payload, SSE4.2)

CRC-32K (Koopman) x^32 + x^30 + x^29 + x^28 + x^26 + x^20 + x^19 + x^17 + x^16 + x^15 + x^11 + x^10 + x^7 + x^6 + x^4 + x^2 + x + 1

CRC-32Q x^32 + x^31 + x^24 + x^22 + x^16 + x^14 + x^8 + x^7 + x^5 + x^3 + x + 1 (aviation; AIXM[23])

CRC-64-ISO x^64 + x^4 + x^3 + x + 1 (HDLC — ISO 3309, Swiss-Prot/TrEMBL; considered weak for hashing[24])

CRC-64-ECMA-182 x^64 + x^62 + x^57 + x^55 + x^54 + x^53 + x^52 + x^47 + x^46 + x^45 + x^40 + x^39 + x^38 + x^37 + x^35 + x^33 + x^32 + x^31 + x^29 + x^27 + x^24 + x^23 + x^22 + x^21 + x^19 +

x^17 + x^13 + x^12 + x^10 + x^9 + x^7 + x^4 + x + 1 (as described in ECMA-182 p. 51)

Figure 1. CRC evaluation simulation

Figure 2. Simulation of random errors CRC check evaluation

Figure 3. Typical block parameters setting (simulation schema in Figure 2)

Recommended values:

Bernoulli Binary Generator:

- Probability of zero – 0.5 (the same probability for 0 and 1)

- Initial seed – e.g. 0

- Sample time → number of samples per second, set (together with simulation time) so

that large enough number of frames is transmitted, e.g. 100 000.

- Samples per frame – number of bits per data frame, choose from 8 to 30

Binary Symmetric Chanel:

- Error probability – probability of bit error, try from 0.0001 to 0.01

CRC Generator:

- Generator polynomial – the same polynomial should be defined in CRC

Detector

- Checksums per frame – should be 1

