
COMPUTER-AIDED GEOMETRIC DESIGN COMPUTER-AIDED GEOMETRIC DESIGN
AND AND COMPUTER GRAPHICSCOMPUTER GRAPHICS::

LINE DRAWING ALGORITHMSLINE DRAWING ALGORITHMS

Andrés Iglesias
e-mail: iglesias@unican.es

Web pages: http://personales.unican.es/iglesias
http://etsiso2.macc.unican.es/~cagd

Department of Applied Mathematics
and Computational Sciences

University of Cantabria
UC-CAGD UC-CAGD GroupGroup

©
 2001 A

ndrés Iglesias. See: http://personales.unican.es/iglesias

Line Drawing Algorithms

However, they are
made of pixels

The lines of this object
appear continuous

© 2001 Andrés Iglesias. See: http://personales.unican.es/iglesias

Some useful definitions General requirements
• Straight lines must appear as straight
lines.

• They must start and end accurately
• Lines should have constant brightness
along their length
•Lines should drawn rapidly

Line Drawing Algorithms
We are going to analyze how this process is achieved.

Rasterization: Process of
determining which pixels
provide the best approximation
to a desired line on the screen.

Scan Conversion: Combination
of rasterization and generating the
picture in scan line order.

?

?
?
?

©
 2

00
1

A
nd

ré
s

Ig
le

si
as

. S
ee

:
ht

tp
:/

/p
er

so
na

le
s.

un
ic

an
.e

s/
ig

le
si

as

Line Drawing Algorithms

For horizontal, vertical and
45º lines, the choice of
raster elements is obvious.
This lines exhibit constant
brightness along the length:

For any other orientation the choice
is more difficult:

?
?

?

?

?

?
?
?

©
 2

00
1

A
nd

ré
s

Ig
le

si
as

. S
ee

:
ht

tp
:/

/p
er

so
na

le
s.

un
ic

an
.e

s/
ig

le
si

as

Line Drawing Algorithms

Rasterization yields uneven brightness: Horizontal and vertical lines
appear brighter than the 45º lines.

?
?

?

?

=>
For fixing so, we would need:
 1. Calculation of square roots
 (increasing CPU time)
 2. Multiple brigthness levels

1. Calculate only an approximate line
2. Use integer arithmetic
3. Use incremental methods

Compromise:

Rasterization of straight lines.

or

© 2001 Andrés Iglesias. See: http://personales.unican.es/iglesias

Line Drawing Algorithms

The equation of a straight line is given by: y=m.x+b

x = xl;

while (x <= xr){

 ytrue = m*x + b;
 y = Round (ytrue);
 PlotPixel (x, y);
 /* Set the pixel at (x,y) on */
 x = x + 1;

}

1. Start at the pixel for the left-hand
 endpoint x1

2. Step along the pixels horizontally
 until we reach the right-hand end
 of the line, xr

3. For each pixel compute the
 corresponding y value

4. round this value to the nearest
 integer to select the nearest pixel

The algorithm performs a floating-point multiplication for every step in x.
This method therefore requires an enormous number of floating-point
multiplications, and is therefore expensive.

Algorithm 1: Direct Scan Conversion

©
 2001 A

ndrés Iglesias. See: http://personales.unican.es/iglesias

Line Drawing Algorithms

Algorithm 2: Digital Differential Analyzer (DDA)
The differential equation of a straight line is given by:

or

The solution of the finite difference approximation is:

∆ x
∆ y =

y2 - y1

x2 - x1

xi+1 = xi + x

yi+1 = yi + y

 ∆

 ∆y2 - y1

x2 - x1

We need only compute m once, as the start of the scan-conversion.

The DDA algorithm runs rather slowly because it requires real
arithmetic (floating-point operations).

1
1

DDA uses
 repeated
 addition

dy
dx

= constant

©
 2001 A

ndrés Iglesias. See: http://personales.unican.es/iglesias

Line Drawing Algorithms

x = xl;
ytrue = yl;
while (x <= xr){
 ytrue = ytrue + m;
 y = Round (ytrue);
 PlotPixel (x, y);
 x = x + 1;
}

DDA algorithm for lines with -1 < m < 1 Example: Third quadrant
-8 -7 -6 -5 -3-4 -2 -1 0

-1

-2

-3

-4

0

Reverse the roles
of x and y using
a unit step in y,
and 1/m for x.

Gaps occur
when m > 1

Switching the roles of x and y when m>1

©
 2

00
1

A
nd

ré
s

Ig
le

si
as

. S
ee

:
ht

tp
:/

/p
er

so
na

le
s.

un
ic

an
.e

s/
ig

le
si

as

Line Drawing Algorithms

Algorithm 3: Bresenham’s algorithm (1965)

This algorithm uses only integer arithmetic, and runs significantly faster.

(0,0) (1,0)

(1,1)
(0,1)

X

Y

1/2

?

?

1/2 ≤ m ≤ 1

0 ≤ m ≤ 1/2

Plot (1,1)

Plot (1,0)

Initialize error:
 e=-1/2

Error is given by:
 e=e+m

Reinitialize error:
 when e>0

Key idea: distance between
the actual line and the nearest
grid locations (error).

Bresenham, J.E. Algorithm for computer control of a digital plotter, IBM Systems Journal,
January 1965, pp. 25-30.

©
 2001 A

ndrés Iglesias. See: http://personales.unican.es/iglesias

Line Drawing Algorithms

Error

0

Example: m=3/8

Initial value:
 e = - 1/2

below below above above
If e<0 below
 else above

Error: e=e+m

e = -1/2+3/8
 =-1/8

e = -1/8+3/8
 = 1/4

e = -3/4+3/8
 = -3/8

Reinitialize
 error:
 e = 1/4 -1
= -3/4

©
 2001 A

ndrés Iglesias. See: http://personales.unican.es/iglesias

Line Drawing Algorithms

However, this algorithm does not lead to integer arithmetic. Scaling by: 2* dx

void Bresenham (int xl, int yl, int xr, int yr)
 {
 int x,y; /* coordinates of pixel being drawn */
 int dy, dx;
 int ne; /* integer scaled error term */
 x = xl; y = yl; /* start at left endpoint */
 ie = 2 * dy - dx; /* initialize the error term */
 while (x <= xr){ /* pixel-drawing loop */
 PlotPixel (x,y); /* draw the pixel */
 if (ie > 0) {
 y = y + 1;
 ne = ne - 2 * dx; /* replaces e = e - 1 */
 }
 x = x + 1;
 ne = ne + 2 * dy; /* replaces e = e + m */
 }
 }

©
 2001 A

ndrés Iglesias. See: http://personales.unican.es/iglesias

Line Drawing Algorithms

Bresenham’s algorithm also applies for circles.

Key idea: compute
the initial octant only

1
2

4

3

Generate first
octant

1

4

0 1
1 0()

Reflect first
quadrant
about x=0

3

-1 0
 0 1()

1 0
0 -1()

Reflect first octant about y=x2

Bresenham, J.E. A linear algorithm for incremental digital display of circular arcs
Communications of the ACM, Vol. 20, pp. 100-106, 1977.

Reflect upper
semicircle
about y=0© 2001 Andrés Iglesias. See: http://personales.unican.es/iglesias

Line Drawing Algorithms

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Bresenham’s incremental circle algorithm.

Example:
circle of radius 8
Bright pixels:

initial pixel (0,8)
 (1,8)
 (2,8)
 (3,7)
 (4,7)
 (5,6)
 (6,5)
 (7,4)
 (7,3)
 (8,2)
 (8,1)
end pixel (8,0)

©
 2001 A

ndrés Iglesias. See: http://personales.unican.es/iglesias

