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Line Drawing Algorithms

However, they are 
made of pixels

The lines of this object 
appear continuous
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Some useful definitions General requirements
• Straight lines must appear as straight 
lines. 

• They must start and end accurately
• Lines should have constant brightness 
along their length
•Lines should drawn rapidly

Line Drawing Algorithms
We are going to analyze how this process is achieved.

Rasterization: Process of 
determining which pixels 
provide the best approximation 
to a desired line on the screen.

Scan Conversion: Combination 
of rasterization and generating the 
picture in scan line order.
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Line Drawing Algorithms

For horizontal, vertical and 
45º lines, the choice of 
raster elements is obvious. 
This lines exhibit constant 
brightness along the length:

For any other orientation the choice 
is more difficult:
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Line Drawing Algorithms

Rasterization yields uneven brightness: Horizontal and vertical lines 
appear brighter than the 45º lines. 

?
?

?

?

=>
For fixing so, we would need: 
  1. Calculation of square roots 
             (increasing CPU time)
  2. Multiple brigthness levels

1. Calculate only an approximate line
2. Use integer arithmetic
3. Use incremental methods

Compromise:

Rasterization of straight lines.

or
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Line Drawing Algorithms

The equation of a straight line is given by: y=m.x+b

x = xl;

while (x <= xr){

      ytrue = m*x + b;
      y = Round (ytrue);
      PlotPixel (x, y); 
         /* Set the pixel at (x,y) on */
      x = x + 1;

}

1. Start at the pixel for the left-hand 
     endpoint x1

2. Step along the pixels horizontally 
    until we reach the right-hand end 
     of the line, xr

3. For each pixel compute the 
    corresponding y value

4. round this value to the nearest 
    integer to select the nearest pixel

The algorithm performs a floating-point multiplication for every step in x. 
This method therefore requires an enormous number of floating-point 
multiplications, and is therefore expensive.

Algorithm 1: Direct Scan Conversion
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Line Drawing Algorithms

Algorithm 2: Digital Differential Analyzer (DDA)
The differential equation of a straight line is given by:

or

The solution of the finite difference approximation is:

∆ x
∆ y = 

y2 - y1

x2 - x1

xi+1 = xi +     x

yi+1 = yi +                  y

  ∆ 

     ∆y2 - y1

x2 - x1

We need only compute m once, as the start of the scan-conversion.

The DDA algorithm runs rather slowly because it requires real 
arithmetic (floating-point operations).

1
1

DDA uses
 repeated 
 addition

dy
dx

= constant
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Line Drawing Algorithms

x = xl;
ytrue = yl;
while (x <= xr){
      ytrue = ytrue + m;
      y = Round (ytrue);
      PlotPixel (x, y);
      x = x + 1;
}

DDA algorithm for lines with -1 < m < 1 Example: Third quadrant
-8 -7 -6 -5 -3-4 -2 -1 0

-1

-2

-3

-4

0

Reverse the roles 
of  x and y using 
a unit step in y, 
and 1/m for x.  

Gaps occur 
when m > 1

Switching the roles of x and y when m>1
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Line Drawing Algorithms

Algorithm 3: Bresenham’s algorithm (1965)

This algorithm uses only integer arithmetic, and runs significantly faster.

(0,0) (1,0)

(1,1)
(0,1)

X

Y

1/2

?

?

1/2 ≤ m ≤ 1

0 ≤ m ≤ 1/2

Plot (1,1)

Plot (1,0)

Initialize error:
                     e=-1/2 

Error is given by:   
                    e=e+m

Reinitialize error:
                   when e>0

Key idea: distance between 
the actual line and the nearest 
grid locations (error).

Bresenham, J.E. Algorithm for computer control of a digital plotter, IBM Systems Journal, 
January 1965,  pp. 25-30.
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Line Drawing Algorithms

Error

0

Example: m=3/8

Initial value:
  e = - 1/2 

below below above above
If e<0 below 
      else above

Error:   e=e+m

e = -1/2+3/8
    =-1/8

e = -1/8+3/8
   = 1/4

e = -3/4+3/8
   = -3/8

Reinitialize
   error:
 e = 1/4 -1 
= -3/4
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Line Drawing Algorithms

However, this algorithm does not lead to integer arithmetic. Scaling by: 2* dx 

void Bresenham (int xl, int yl, int xr, int yr)                                                                
       {
          int x,y;                                /* coordinates of pixel being drawn  */
          int dy, dx;                                           
          int ne;                                            /* integer scaled error term     */
          x = xl; y = yl;                               /* start at left endpoint            */          
          ie = 2 * dy - dx;                                 /* initialize the error term */
            while (x <= xr){                                     /* pixel-drawing loop */
                  PlotPixel (x,y);                                      /* draw the pixel   */
                  if (ie > 0) {
                       y = y + 1;             
                       ne = ne - 2 * dx;                              /* replaces e = e - 1  */
                  }
                  x = x + 1;
                 ne = ne + 2 * dy;                                 /* replaces e = e + m  */
            }
      }
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Line Drawing Algorithms

Bresenham’s algorithm also applies for circles. 

Key idea: compute 
the initial octant only

1
2

4

3

Generate first
octant

1

4

0    1
1    0( )

Reflect first 
quadrant 
about x=0

3

-1    0
 0    1( )

1    0
0   -1( )

Reflect first octant about y=x2

Bresenham, J.E. A linear algorithm for incremental digital display of circular arcs
Communications of the ACM, Vol. 20, pp. 100-106, 1977.

Reflect upper
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Line Drawing Algorithms
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Bresenham’s incremental circle algorithm.

Example: 
circle of radius 8
Bright pixels:

initial pixel       (0,8)
                         (1,8)
                         (2,8)
                         (3,7)
                         (4,7)
                         (5,6)
                         (6,5)
                         (7,4)
                         (7,3)
                         (8,2)
                         (8,1)
end pixel          (8,0)
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