T SR e
w Department of Applied Mathematics

and Computational Sciences
University of Cantabria

UC-CAGD Group

COMPUTER-AIDED GEOMETRIC DESIGN
AND COMPUTER GRAPHICS:

LINE DRAWING ALGORITHMS

Andrés Iglesias
e-mail: iglesias@unican.es
Web pages: http://personales.unican.es/iglesias
http://etsiso2.macc.unican.es/~cagd

sesa|f1/59°uedun'safeucs led//:dny ses sess|f| s9puy T00Z ©



Line Drawing Algorithms

|

The lines of this object
appear continuous

Vi
e

However, they are
made of pixels

© 2001 Andrés Iglesias. See: http://personales.unican.es/iglesias



Line Drawing Algorithms
We are going to analyze how this process is achieved.

Some useful definitions General requirements
Rasterization: Process of e Straight lines must appear as straight
determining which pixels lines.

provide the best approximation
to adesired line on the screen.

» They must start and end accurately

e Lines should have constant brightness
along their length

Lines should drawn rapidly

Scan Conversion: Combination
of rasterization and generating the
picture in scan line order.

8

3

= -
=

3] -
=

5

8

®

[

o

o

o

=2

e

& n
o

3

A=y

NS

S

[

<

—

o

o

AN

©




Line Drawing Algorithms

For horizontal, vertical and For any other orientation the choice
45° lines, the choice of IS more difficult:
raster el ements s obvious.

This lines exhibit constant
brightness along the length: 5
3 ? 2
. u
o
g
£ n
8 ?
% N
=y NG
@ .
?
S u
©




Line Drawing Algorithms

_ Rasterization of straight lines.

/ or

4

-
Rasterization yields uneven brightness. Horizontal and vertical lines
appear brighter than the 45° lines.

For fixing so, we would need: | Compromise: | |
1. Calculation of squareroots | 1. Cdl c_ulate only_ an approximate line
(increasing CPU time) —> 2.Use !nteger arithmetic
2. Multiple brigthness levels 3. Use incremental methods

© 2001 Andrés Iglesias. See: http://personales.unican.es/iglesias



Line Drawing Algorithms

The equation of astraight lineisgiven by: | y=m.x+b

Algorithm 1: Direct Scan Conversion

1. Start at the pixel for the left-hand ~ x = xlI:

endpoint x1 _
_ _ while (X <= xr){
2. Step along the pixels horizontally
until we reach the right-hand end ytrue = m*x + b;
of theline, xr y = Round (ytrue);

PlotPixel (X, Y);
[* Set the pixel at (X,y) on */
X=X+1

3. For each pixel compute the
corresponding y value

4. round this value to the nearest
Integer to select the nearest pixel )

The algorithm performs a floating-point multiplication for every step in x.
This method therefore requires an enormous number of floating-point
multiplications, and is therefore expensive.

S50 |61/59"Ueoun'sa feuos Jod/:dny 58S sersa|f| S3puY TO0Z ©



Line Drawing Algorithms

Algorithm 2: Digital Differential Analyzer (DDA)
The differential equation of astraight lineis given by:

ﬂ = constant

dx

Ay _ Y- )
X2- X1

The solution of the finite difference approximation is:

Xi+1=Xi + AX

y2-y1

Yi+1=Y, +
X2- X1

We need only compute m once, as the start of the scan-conversion.

The DDA algorithm runs rather slowly because it requires real
arithmetic (floating-point operations).

Y,

,/

DDA uses
repeated
addition

sess|61/59 uediunssfeucs jod//:dny 88S seiss (6] s9puy TO0Z ©



Line Drawing Algorithms

DDA algorithm for lineswith-1 < m< 1 Example: Third quadrant

X =Xxl; 8 -7 6 5 4 -3 -2 -1 OO
ytrue = yl; =

while (X <= xr){ / o— -1

ytrue = ytrue + m; /./' 9

y = Round (ytrue);

PlotPixel (x, y); / ° -3
=x+ 1

AT o -4

9
g

g

g

§ Switching the roles of x and y when m>1

z /
§ / Reverse theroles

¢ Gapsoccur / of xandy using

S whenm>1 / aunit stepiny,

£ % and 1/mfor x.

<




Line Drawing Algorithms

Algorithm 3: Bresenham's algorithm (1965)

Bresenham, J.E. Algorithm for computer control of a digital plotter, IBM Systems Journal,
January 1965, pp. 25-30.

This agorithm uses only integer arithmetic, and runs significantly faster.

AY
(0,2) (1,1) Key idea: distance between
’ ? the actual line and the nearest
1/2 £ m£ 1 gridlocations (error).
Plot (1,1) Initialize error:
_________________ L 1/2 e=-1/2
0E£mME 12 Error is given by:
—et+tm
Plot (1,0) eser
@—» Reinitialize error:

¢ .
(0,0) w0 X when e>0

se 15061/ UeoIUN'safeucs Jod/:dny 388 se1sa|f| S3puY TO0Z ©



Line Drawing Algorithms

0
Example: m=3/8 //
If e<0 below G =
dlse sbove ™ below below above above
Error

Error: e=etm

0 /‘

|
Initial value: e= -1/2+3/8 e= 1/8+3/8

=-1/2 =-1/8 = 1/4

=
U

sess|b1/5e Ueoiunsafeuos jody/:dny 88s seiss (6] S9puy T00Z ©

Reinitialize
error:

e=14-1
= -3/4

/4+ 3/8



Line Drawing Algorithms

However, this algorithm does not lead to integer arithmetic. Scaling by: 2* dx

void Bresenham (int xI, int yl, int xr, int yr)

{
Int X,y; [* coordinates of pixel being drawn */
Int dy, dx;
int ne; [* integer scaled error term  */
Xx=Xl;y=yl; [* start at left endpoint */
le=2%* dy - dx; [* Initialize the error term */
while (x <= xr){ [* pixel-drawing loop */
PlotPixel (Xx,y); [* draw the pixel */
if (ie>0){
y=y+1
ne=ne-2* dx; [* replacese=e-1 */
}
X=X+1
ne=ne+2* dy; [* replacese=e+ m */
}

}

sess|f1/se°uedun'safeucs led//:dny 8ss sess|f| s9puy 1002 ®



Line Drawing Algorithms

Bresenham'’ s algorithm also appliesfor circles.

Bresenham, J.E. A linear algorithm for incremental digital display of circular arcs
Communications of the ACM, Val. 20, pp. 100-106, 1977.

Key idea: compute 0 1
the initial octant only 1 O
(2) Reflect first octant about y=x
Y
(3) Reflect first (1) Generate first
quadrant (2) octant
about x=0 @ @
(o) @
(4) Reflect upper
~— semicircle (1) 2)
© 2001 Andreés Iglesias. See: http://personales.unican.es/iglesias abOUt y: O ]



Line Drawing Algorithms

Bresenham’ s incremental circle algorithm.

Example:

circle of radius 8
Bright pixels:

initial pixel—=(0,8)

(1,8)

(2,8)
(3.7)

(4.7)

(5,6)
(6,9)

(7.4)

N W b 01 OO0 N OO ©

(7,3)
(8.2)

=

(8,1)

o

sess|f1/s9°uedIUN'saeucs ledy/:dny 88s sess|f| s3puy TO0Z ©

endpixel —=(8,0) “og—1 5 3 3



