DEVELOPMENT OF THE BRESENHAM LINE ALGORITHM

FOR A FIRST COURSE IN COMPUTER SCIENCE

Alfred L. McKinney
K.K. Agarwal
Department of Computer Science
Louisiana State University in Shreveport
Shreveport, LA 71115

ABSTRACT

The Bresenham line algorithm has found wide applicability for drawing straight lines
rapidly on raster-scan display devices in both software and hardware. This paper presents the
significance of this algorithm and provides its complete derivation for use in a first course in
computer graphics. The line drawing procedure is introduced with a simpler algorithm,
namely, the Digital Differential Analyzer (DDA). Pseudocode and a Turbo Pascal 6.0
procedure with sample output for both the DDA and the Bresenham algorithms are included.

INTRODUCTION

In a first course in Computer Graphics, it is appropriate to introduce the students to
simple straight line drawing algorithms early in the course. The simplest of these is the Digital
Differential Analyzer algorithm [Foley 1990, Hearn 1986]. Unfortunately, this algorithm uses
floating point arithmetic which is very inefficient for raster-based computer graphics devices.
Efficiency is of extreme importance since complex drawings may involve hundreds or
thousands of lines. Bresenham’s algorithm relies only on integer arithmetic and removes this
deficiency. Therefore, it is used frequently in graphics software and some manufacturers have
incorporated its use in graphics hardware. Recent improvements to Bresenham’s algorithm
which rely on using symmetry can be found in [Glassner 1990]. In examining several
commonly used computer graphics texts (those listed as references at the end of this paper),
we have not found a complete derivation of the Bresenham aigorithm. Stevens [1989] gives
a C program for the complete algorithm in which we discovered errors. The pixels selected
were different than the ones which should have been selected by both the DDA and the true
Bresenham algorithm.

THE DDA PROCEDURE

The DDA is an algorithm for calculating pixel positions along the line using the slope-
intercept form for the equation of a straight line, namely, y = m x + b, where m is the slope
of the line and b is the y intercept. This algorithm selects the pixel which is closest to the
actual line. For analog devices, this algorithm forms the basis for determining voltages applied
to the line drawing mechanism.

It is appropriate to introduce students to this algorithm because of its simplicity. To
clarify the working of this algorithm, let us consider drawing a straight line from (5,3) to
(10,6). Figure 1 shows resulting pixel positions that are selected by the algorithm. The end-
points (5,3) and (10,6) are selected because the line passes through them exactly. The pixel

70

RMSCCC-92

(6,4) is selected because it is closer to the line than the pixel (6,3). Similarly, at each step the
pixel closest to the line is selected.

15
14
13
12
11

et
(-]

Y-Axis

g ~» N W e« 00 NN 20

1
12
13
14
1%

unmm*mnhmaa-—-

X-Axis
Figure 1 DDA example for a line from (5,3) to (10,6)

A Turbo Pascal 6.0 procedure based on this algorithm is given below:

procedure DDA (x1, yl, x2, y2 : integer; c : integer);
var
length, 1 : integer;
X, ¥, Xincrement, yincrement : real;
begin
length := abs{x2-xl1);
if abs(y2-yl) > length then length := abs{y2-y1);
xincrement := (x2 - x1) / length;
yincrement := (y2 - yl) / length;
X = X1 + 0.5;
Yy := ¥l + 0.5;
for i := 1 to length do
begin
PutPixel (trunc(x), trunciy}, c);
X 1= X + xXincrement;
Y 1= ¥ + vincrement;
end;
PutPixel (x2, y2, c)
end;

It is clear from the above listing that there are two cases. If the absolute value of the
slope of the line is less than 1, the procedure will increment the x value by 1 each time
through the loop, while the y value will be incremented by the slope value. If the absolute
value of the slope exceeds 1, the y value is incremented by 1 each time through the loop and
the x value is incremented by the reciprocal of the slope value.

71

RMSCCC-92

The selection of the pixel nearest the line in each step is done simply by adding 0.5 to
each of the x and y values and truncating them to integral values, which in essence, is
rounding them to the closest integers.

THE BRESENHAM LINE ALGORITHM

In 1965 Bresenham [Bresenham 1965] introduced a simple and efficient algorithm for
drawing lines that has widely been implemented by both software and hardware [Glassner
1990]. This algorithm uses only integer values and avoids any multiplications. It has a tight
and efficient innermost loop that generates the pixels. [Hill 1990] states that it is an
important example of an incremental algorithm that computes the location of each pixel on the
line based on information about the previous pixel.

DERIVATION OF THE BRESENHAM LINE ALGORITHM

The derivation starts with the slope intercept form of the equation of a line, namely, y
= m x + b, where m is the slope and b is the y-intercept. It is convenient to divide the
derivation into four cases:

case l1a. Slope of line is between 0 and 1 (0 < m < 1). We assume that the pixel location
(x;, y) has been plotted for the line and now we need to decide which is the next
pixel to plot. The two choices for the next pixel position are at coordinates (x;+1,
y) and (x,+1, y;+1). The actual position y on the line can be calculated by

y=m(x+1)+b.

Then the distances from the actual y to the center of the two choice ordinates y;
and y;+ 1 can be calculated by

d=y-p=m@E+l)+b-y

d=w+thH-y=y+1-mEx+)-b
and the difference of these two distances is

d-dy=2mx+1)-2y,+2b-1.

It is now convenient to define a parameter p; that provides a measure of the
relative distances of two pixels from the actual position on a given line.

p = dx (d, - dy) M
Substituting
m = dy / dx,
equation (1) can be rewritten so that it involves only integer arithmetic:
p: = dx (d; - dy)
=2dyx-2dxy, + ¢)

where ¢ has the value 2 dy + dx (2 b - 1) and could be calculated once for all
points but (2) can be revised to eliminate this constant. The parameter p; has a
negative value if the pixel at y, is closer to the line than the upper pixel y;+1. In
that case, we select the lower pixel; otherwise the upper pixel is chosen.
Equation (2) is simplified by relating parameters for successive x intervals. Then
the value for each succeeding parameter is obtained from the previously calculated
parameter. Equation (2) can be rewritten as

pi+1 = 2 dy xi+1 = 2 dX Yi+1 + C.
Subtracting (2) from this expression, we have

72

case 1b.

RMSCCC-92

Pirr =P = 2dy (Rivy - %) - 2 dX (Yisx -)
Butx,,, = x; + 1, so that
Pivt = P+ 2dy - 2dx (yiy, - Y- (3)
This equation provides a way to calculate the value of each successive parameter

from the previous one. The first parameter, p,, is obtained by evaluating (2)
with(x,, y,) as the starting endpoint and m = dy / dx :

p: = 2dy - dx 4)
and the successive pixel selection is made as (x;+1, y,) if p, < 0, and
Pisr = P + 2 dy.
Otherwise, the successive pixel location is (x;+1, y;+ 1)and
Piss = Pi + 2 (dy - dx). &)
Slope of line is between -1 and 0 (-1 < m < 0). We assume that pixel location
(x;, y) has been plotted for the line and now we need to decide which is the next

pixel to plot. The two choices for the next pixel position are at coordinates
(x;+1, y) and (x;+1, y;-1).The actual position on the line can be calculated by

y = m (x,+1) + b.

Then the distance from the actual y to the center of the two choice pixels y; and
yi-1 can be calculated by:

d =yi-y=yi-m{x+1)-b
b =y-@:)=mx+l)+b-y + 1

and the difference of these two distances is
d-d,=2y-2mx-2b-2m- 1. (6)

It is now convenient to define a parameter that provides a measure of the relative
distances of two pixels from the actual position on a given line. Substituting m
= dy / dx, equation (6) can be rewritten so that it involves only integer arithmetic:

P = dx {d, -d) 7
=2dxy,-2dyx +c 8

where ¢ has the value -2dy -dx 2b + 1).
Rewriting (8) at i+ 1, we obtain

Pisa = 2dxy;y, -2dy x4y + . 9
Subtracting (8) from (9) we obtain

Pivr - P = 2.dX (Vigs - ¥ - 2 dy (X417%). (10)
But x;,;, = x; + 1 so that (10) becomes

Pies - P = 2dx (iwy - y0) - 2 dy. (11)
Now consider equation (7) with (x,, y,) and m = dy / dx. We obtain

p; = -2dy - dx. (12)

It is seen from (7) that if p, is < O then d, is smaller than d, and the point
corresponding to the distance d;, namely (x;+ 1, y;) should be selected and from
(10) it is seen that

Pir = D; - 2 dy. (13)

73

RMSCCC-92

case 2a.

74

Otherwise, if p; > = 0 then d, is smaller so that {x,+ 1, y;-1) is chosen and
Pi+s = Pi- 2 (dx + dy). (14)
From (4), (5}, (13), and (14) it is seen that cases la and ib may be summarized
as
if m >=0,s =1, otherwise s = -1

plot (x;, y,)
calculate p, = 2 s dy - dx

at any step i,

Xiep =% + 1,
if p < Otheny,,, =y,

Pier = P + 2sdy,
elsey,, =y +5s,
Pivy =P + 2 (s dy - dx).

Slope of line is greater than 1 (m > 1) . We need to take unit steps in the y
direction, that is, y;,, = y,+1. Otherwise, unit steps of 1 in the x-direction as in
cases la and 1b might result in steps in the y-direction by more than 1 thus
causing holes to appear in the line. We will consider the case where y, < y, .
Assume (X,, v,) has been plotted. Theny,, =y, + 1 . We need to determine
at each step which of the pixels (x;, y;+1) or (x;+1, y;+1)is to be plotted next.
We need to use an alternate form of the slope-intercept equation of a line, namely,

X = y/m - b/m = y dx/dy - b dx/dy.
We define the distances from x; or x,,, from the true x value on the line by
d =x-x = (y+1}dx/dy - b dx/dy - x;
d,=x+1-x=x%x+1-(, + 1)dx/dy + b dx/dy.
Subtracting gives
d-d, =2y, dx/dy -2 x; + 2 dx/dy - 2 b dx/dy - 1.
Now define the parameter

p; = dy (d, - dy) (15)
pi=2ydx-2xdy +c (16}

where c = 2dx (1 - b) - dy. Then
P =2V dx-2x%x,,dy + ¢
and
Pitr - Pi = 2.dX (Jixy -) - 2.dy (Kipy - X).
Since y;,, = y; + 1, this latter equation becomes
Pier - P = 2dx - 2dy (X4, - X). (17)

We now substitute (x,, y;) into {16) and use the value of ¢ plus b = y - x dy/dx
to obtain

p; = 2 dx - dy.

Therefore we can summarize this case by if p; < 0 at any step then d, < d, so we
select the pixel (x;, y;+1) and from (17) p,, = p; + 2 dx, otherwise, select
(x;+1, y;+ 1)and

Pivs = Pi + 2 (dx - dy).

RMSCCC-92

case 2b. Slope of the line is less than -1 (m < -1). We need to take unit steps of -1 in the

y-direction (see discussion at the beginning of case 2a). Assume thaty, > y, and
that the pixel (x,, y;) has been plotted. Then we need to determine at each step
which of the pixels (x;, y;-1) or(x;+1, y;-1) needs to be selected. We will use the
following form of an equation for a line

x = y dx/dy - b dx dy.
We define the distances from the true x-value on the line from the x; or x-1 by

d, = x -x; = (y-1) dx/dy - b dx/dy - x

d, = x;+1-x = x+1 - (y-1) dx/dy + b dx/dy.
Subtraction gives

d,-d, =2y, dx/dy -2 x -1-2(b+1)dx/dy.
Now we define the parameter

p; = dy (d, - d,)

=2y dx-2xdy +¢ (18)

where ¢ = -dy - 2dx (b + 1). Then

Pis1 = 2 ¥ dx -2 %, dy + ¢
and

Pis1 - P = 2.dX (Yisy - ¥ - 2 dy (Xiyy - X0, (19)
Since y;,, = y; - 1, this latter equation becomes

Pier - Pi = -2 dx - 2.dy (Xi4q - %)
We now substitute (x,, y,) into (18) and use the value of c plus b =y - x dy/dx
to obtain

p; = -dy - 2 dx.
Therefore, we can summarize this case as follows:

if p; < 0 at any step then d, < d, we select the pixel (x;+1, y;-1) and from (19)
Pis1 = P; - 2 dx - 2 dy, otherwise, select (x;, y;-1) and p;,; = p; - 2 dx.

We can summarize cases 2a and 2b as

ifm >=0, s = 1, otherwise s = -1
plot (x, y,)
calculate p, = 2 s dx - dy
at any step 1,
Yi+1 = y1 it s,
ifdy >= 0and if p, <= 0 then
Piet =P + 25 dx
else
X =%+ 1
Pisi =P+ 2(dx-dy)
else if p, <= 0 then
X =% + 1
Pivt =D + 2 (s dx - dy)
eisep,, = p;, + 25 dx.

Cases !a, Ib, 2a, an¢ 2b are summarized in the pseudo-code given in the next
section.

75

RMSCCC-92

THE PSEUDOCODE FOR THE BRESENHAM LINE ALGORITHM

The derivation of the Bresenham Line Algorithm was presented in the previous section.
The pseudo-code for this algorithm is as follows:

Input the endpoints (x,, y,) and (x,, y,) for the line segment.

Arrange the coordinates so that x, < Xx,, that is, (x;, y,) is the left endpoint.
Calculate dx = x, - x;, and dy = y, -y, . Note that dx > 0 from step 2.

If dy > = 0 then set s= 1 else set s = -1 (since dx > 0, s is the sign of the slope).
Setx =x,,y =y,

If abs(dy) < = abs(dx)
then begin
calculate p = 2 s dy - dx,
while x <= x, do

& F R

begin
ifp<O
then
p=p+ 2sdy
else
y =Y F 8,

Pisr = P + 2 (s dy - dx)
set_pixel (x, y)
x=x+1
end
end
else begin
calculate p = 2 s dx - dy
whiley <> y, do

begin
if dy > = 0 then
itp <=0
thenp = p + 2sdx
else

x=x+1
p=p+ 2(sdx-dy)
else if p <= 0 then
x=x+1
p=p+ 2(sdx-dy)
elsep=p+ 2sdx
set_pixel (x, y)

y=y+s
end
set_pixel (X,,¥,)
end.

THE BRESENHAM LINE PROCEDURE
The Turbo Pascal 6.0 procedure for the Bresenham line algorithm is given below:

procedure Brline(xl, yl, x2, y2 : integer; ¢ : integer);
var
dx, dy, dxabs, dyabs, sdx, sdy, x, ¥, 8, p, ¢cl, c2 : integer;

76

RMSCCC-92

dy := y2 - vy1;
if dy < 0 then g := -1 else 58 := 1;

dyabs := abs(dy) ;

begin
p =2 * g % gdy - dx;
Y = ¥1l;
¢l = 2 * 8 * dy;
c2 := 2 * (g8 * dy - dx);
for x := x1 to x2 do
begin

PutPixel (x, v, ©);
if p < 0 thenp :=p + ¢l

else
begin
Y =Y + B;
p=p+c2
end;
end
end
else
begin
p :=2 * g * dx - dy;
o E= Xlj t
¢l := 2 * g * dx;
c2 =2*(S*dx-dY)a
y::yl;
while v <> y2 do
begin
if dy »>= 0 then if p <= 0 then p := p + c1
else begin
P :=p + Cc2;
X :=x + 1
end
else begin
if p <= 0 then
begin
P :=Pp + €2;
X :=X + 1
end
else p := p + cl
end;
Y 1=y + 8
end
end

end;

The Turbo Pascal 6.0 main program to test the DDA and the Bresenham Line
procedures is given below:

program test;

uses
graph;

var
GraphDriver : integer;
GraphMode : integer;
ErrorCode : integer;

procedure DDA (x1,yl,x2,y2:integer;c:integer) ;

end;

77

RMSCCC-92

procedure Brline (x1,yl,x2,y2:integer;c:integer);

end;

begin
GraphDriver := Detect;
InitGraph (GraphDriver, GraphMode, ‘'\TP\BGI') ;
SetGraphMode (VGA) ;
DDA({S, 3, 10, 6, 15);
BrLine (5, 3, 10, &6, 15);
BrLine(5, 6, 10, 3, 15);
BrLine(5, 3, 10, 13, 15);
BrLine(5, 13, 10, 3, 15);
Readln;
CloseGraph;

end.

Figures 2 through 5 show the output produced by a modified version of this program
which produced output on a plotter instead of a graphics monitor to better illustrate why the
pixels were selected. They are based on the cases discussed in the derivation section.

i§
14
i3
12

-
-

[
o

Y-Axis

'7‘74

QO = N W s 00D 3B D

O~NmMewwmoOoeraoag TR0
X-Axis

Figure 2 Case 1a of the Bresenham Line Procedure for a line from
(5,3) to (10,6)

CONCLUSION

The Bresenham algorithm is representative of a number of curve generation methods and
we have found it useful to assign it as a stand-alone programming exercise as well as part of
the development of a 2-D graphics package. The discussion and the algorithm for the
fundamental line output primitive are incomplete in the references that we have examined.

78

RMSCCC-92

This paper provides the complete development of this algorithm and, hopefully, will prove to
be a useful reference for teachers and students for a first course in computer graphics.

15

Y—-Axis

0 = N W +» 01 D3 OO

crnmenmoroaaINDZA

X-Axis
Figure 3 Case 1b of the Bresenham Line Procedure for a line from
(5,6) to (10,3)

REFERENCES

[Artwick 1984] Bruce A. Artwick, Applied Concepts in Microcomputer Graphics, Prentice-
Hall, 1984.

[Bresenham 1965] J. E. Bresenham, “Algorithm for Computer Control of a Digital Plotter",
IBM Systems Journal, January 1965, pp.25-30.

[Foley 1990] James D. Foley, Andries van Dam, Steven Feiner and John Hughes, Comput
er Graphics: Principles and Practice, 2nd edition, Addison Wesley, 1990.

[Giloi 1978] Wolfgang K. Giloi, Interactive Computer Graphics, Prentice-Hall, 1978.
[Glassner 1990] Andrew Glassner, Graphics Gems, Academic Press, 1990.

[Harrington 1983] Steven Harrington, Computer Graphics: A Programming Approach,
McGraw-Hill, 1983.

[Hearn 1986] Donald Hearn and M. Pauline Baker, Computer Graphics, Prentice-Hall, 1986.
[Hill 1990] Francis S. Hill, Jr., Computer Graphics, Macmillan, 1990.
[Mielke 1991] Bruce Mielke, Integrated Computer Graphics, West, 1991.

[Pokorny 1989] Cornel K. Pokorny and Curtis F. Gerald, Computer Graphics: The Principles
behind the Art and Science, Franklin, Beedle & Associates, 1989,

79

RMSCCC-92

-
R

[|
-

bl el
N Q)
>

| L
[= I

Y-Axis

O =~ N w » U 0 9 D0 W

12
13
14
15

o =
O ww N M ~ 11 O v D O v =

X—-Axis

Figure 4 Case 2a of the Bresenham Line Procedure for a line from
(5,3) to (10,13)

[Salmon 1987] Rod Salmon and Mel Slater, Computer Graphics: Systems & Concepts,
Addison-Wesley, 1987.

[Stevens 1989] Roger T. Stevens, Graphics Programming in C, M&T Books, 1989.
[Watt 1984] Alan Watt, Three Dimensional Computer Graphics, Addison-Wesley, 1989,

80

RMSCCC-92

Y-Axis

D = NN W e th Y O O

 — N m -]
O ~ N O 4+ N 0O &~ O 0 s .

X—-Axis

Figure 5 Case 2b of the Bresenham Line Procedure for a line from
(5,13) to (10,3)

81

