
 Appendix: Derivation of Bresenham’s line algorithm

© E Claridge, School of Computer Science, The University of Birmingham

DERIVATION OF THE BRESENHAM’S LINE ALGORITHM

Assumptions:
● input: line endpoints at (X1,Y1) and (X2, Y2)
● X1 < X2
● line slope ≤ 45o, i.e. 0 < m ≤ 1
● x coordinate is incremented in steps of 1, y coordinate is computed
● generic line equation: y = mx + b

x x +1i i

 y i

y +1i

y = mx + b

y
d1

d2

Derivation
Assume that we already have a location of pixel (xi, yi) and have plotted it. The question is,
what is the location of the next pixel.

Geometric location of the line at x-coordinate xi+1 = xi + 1 is:

 y = m(xi + 1) + b (1)
where:
 m = ∆y / ∆x (slope) (2)
 b – intercept
 ∆x = X2 – X1 (from the assumption above that X1 < X2) (3)
 ∆y = Y2 – Y1

Define:
 d1 = y – yi = m(xi + 1) + b - yi

 d2 = (yi + 1) - y = yi + 1 - m(xi + 1) - b

Calculate:
 d1 – d2 = m(xi + 1) + b - yi - yi – 1 + m(xi + 1) + b
 = 2m(xi + 1) – 2yi + 2b – 1 (4)

if d1 – d2 < 0 then yi+1 ← yi (5)
if d1 – d2 > 0 then yi+1 ← yi + 1 (6)

We want integer calculations in the loop, but m is not an integer. Looking at definition of m
(m = ∆y / ∆x) we see that if we multiply m by ∆x, we shall remove the denominator and
hence the floating point number.

 Appendix: Derivation of Bresenham’s line algorithm

© E Claridge, School of Computer Science, The University of Birmingham

For this purpose, let us multiply the difference (d1 - d2) by ∆x and call it pi:

 pi = ∆x(d1 – d2)

The sign of pi is the same as the sign of d1 – d2, because of the assumption (3).

Expand pi:

pi = ∆x(d1 – d2)
 = ∆x[2m(xi + 1) – 2yi + 2b – 1] from (4)
 = ∆x[2 ⋅ (∆y / ∆x) ⋅ (xi + 1) – 2yi + 2b – 1] from (2)
 = 2⋅∆y⋅ (xi + 1) – 2⋅∆x⋅yi + 2⋅∆x⋅b – ∆x result of multiplication by ∆x
 = 2⋅∆y⋅xi + 2⋅∆y – 2⋅∆x⋅yi + 2⋅∆x⋅b – ∆x
 = 2⋅∆y⋅xi– 2⋅∆x⋅yi + 2⋅∆y + 2⋅∆x⋅b – ∆x (7)

Note that the underlined part is constant (it does not change during iteration), we call it c, i.e.
 c = 2⋅∆y + 2⋅∆x⋅b – ∆x

Hence we can write an expression for pi as:

 pi = 2⋅∆y⋅xi– 2⋅∆x⋅yi + c (8)

Because the sign of pi is the same as the sign of d1 – d2, we could use it inside the loop to
decide whether to select pixel at (xi + 1, yi) or at (xi + 1, yi +1). Note that the loop will only
include integer arithmetic. There are now 6 multiplications, two additions and one selection in
each turn of the loop.

However, we can do better than this, by defining pi recursively.

 pi+1 = 2⋅∆y⋅xi+1– 2⋅∆x⋅yi+1 + c from (8)
 pi+1 – pi = 2⋅∆y⋅xi+1– 2⋅∆x⋅yi+1 + c
 - (2⋅∆y⋅xi – 2⋅∆x⋅yi + c)
 = 2∆y ⋅ (xi+1 – xi) – 2∆x ⋅ (yi+1 – yi) xi+1 – xi = 1 always

 pi+1 – pi = 2∆y – 2∆x ⋅ (yi+1 – yi)

Recursive definition for pi:

 pi+1 = pi + 2∆y – 2∆x ⋅ (yi+1 – yi)

If you now recall the way we construct the line pixel by pixel, you will realise that the
underlined expression: yi+1 – yi can be either 0 (when the next pixel is plotted at the same y-
coordinate, i.e. d1 – d2 < 0 from (5)); or 1 (when the next pixel is plotted at the next y-
coordinate, i.e. d1 – d2 > 0 from (6)). Therefore the final recursive definition for pi will be
based on choice, as follows (remember that the sign of pi is the same as the sign of d1 – d2):

 Appendix: Derivation of Bresenham’s line algorithm

© E Claridge, School of Computer Science, The University of Birmingham

if pi < 0, pi+1 = pi + 2∆y because 2∆x ⋅ (yi+1 – yi) = 0
if pi > 0, pi+1 = pi + 2∆y – 2∆x because (yi+1 – yi) = 1

At this stage the basic algorithm is defined. We only need to calculate the initial value for
parameter po.

pi = 2⋅∆y⋅xi– 2⋅∆x⋅yi + 2⋅∆y + 2⋅∆x⋅b – ∆x from (7)

p0 = 2⋅∆y⋅x0– 2⋅∆x⋅y0 + 2⋅∆y + 2∆x⋅b – ∆x (9)

For the initial point on the line:
 y0 = mx0 + b
therefore
 b = y0 – (∆y/∆x) ⋅ x0

Substituting the above for b in (9)we get:

p0 = 2⋅∆y⋅x0– 2⋅∆x⋅y0 + 2⋅∆y + 2∆x⋅ [y0 – (∆y/∆x) ⋅ x0] – ∆x
 = 2⋅∆y⋅x0 – 2⋅∆x⋅y0 + 2⋅∆y + 2∆x⋅y0 – 2∆x⋅ (∆y/∆x) ⋅ x0 – ∆x simplify
 = 2⋅∆y⋅x0 – 2⋅∆x⋅y0 + 2⋅∆y + 2∆x⋅y0 – 2∆y⋅x0 – ∆x regroup
 = 2⋅∆y⋅x0 – 2∆y⋅x0 – 2⋅∆x⋅y0 + 2∆x⋅y0 + 2⋅∆y – ∆x simplify
 = 2⋅∆y – ∆x

We can now write an outline of the complete algorithm.

Algorithm

1. Input line endpoints, (X1,Y1) and (X2, Y2)
2. Calculate constants:
 ∆x = X2 – X1
 ∆y = Y2 – Y1
 2∆y
 2∆y – ∆x
3. Assign value to the starting parameters:
 k = 0
 p0 = 2∆y – ∆x
4. Plot the pixel at ((X1,Y1)
5. For each integer x-coordinate, xk, along the line
 if pk < 0 plot pixel at (xk + 1, yk)
 pk+1 = pk + 2∆y (note that 2∆y is a pre-computed constant)

 else plot pixel at (xk + 1, yk + 1)
 pk+1 = pk + 2∆y – 2∆x
 (note that 2∆y – 2∆x is a pre-computed constant)

 increment k

 while x k < X2

