DERIVATION OF THE BRESENHAM'S LINE ALGORITHM

Assumptions:

- input: line endpoints at $(\mathrm{X} 1, \mathrm{Y} 1)$ and $(\mathrm{X} 2, \mathrm{Y} 2)$
- X1 < X2
- line slope $\leq 45^{\circ}$, i.e. $0<\mathrm{m} \leq 1$
- x coordinate is incremented in steps of $1, y$ coordinate is computed
- generic line equation: $y=m x+b$

Derivation

Assume that we already have a location of pixel ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) and have plotted it. The question is, what is the location of the next pixel.

Geometric location of the line at x-coordinate $\mathrm{x}_{\mathrm{i}+1}=\mathrm{x}_{\mathrm{i}}+1$ is:

$$
\begin{equation*}
\mathrm{y}=\mathrm{m}\left(\mathrm{x}_{\mathrm{i}}+1\right)+\mathrm{b} \tag{1}
\end{equation*}
$$

where:

$$
\begin{align*}
& \mathrm{m}=\Delta \mathrm{y} / \Delta \mathrm{x} \text { (slope) } \tag{2}\\
& \mathrm{b}-\text { intercept } \\
& \Delta \mathrm{x}=\mathrm{X} 2-\mathrm{X} 1 \text { (from the assumption above that } \mathrm{X} 1<\mathrm{X} 2 \text {) } \tag{3}\\
& \Delta \mathrm{y}=\mathrm{Y} 2-\mathrm{Y} 1
\end{align*}
$$

Define:
$\mathrm{d} 1=\mathrm{y}-\mathrm{y}_{\mathrm{i}}=\mathrm{m}\left(\mathrm{x}_{\mathrm{i}}+1\right)+\mathrm{b}-\mathrm{y}_{\mathrm{i}}$
$\mathrm{d} 2=\left(\mathrm{y}_{\mathrm{i}}+1\right)-\mathrm{y}=\mathrm{y}_{\mathrm{i}}+1-\mathrm{m}\left(\mathrm{x}_{\mathrm{i}}+1\right)-\mathrm{b}$
Calculate:

$$
\begin{align*}
\mathrm{d} 1-\mathrm{d} 2 & =\mathrm{m}\left(\mathrm{x}_{\mathrm{i}}+1\right)+\mathrm{b}-\mathrm{y}_{\mathrm{i}}-\mathrm{y}_{\mathrm{i}}-1+\mathrm{m}\left(\mathrm{x}_{\mathrm{i}}+1\right)+\mathrm{b} \\
& =2 \mathrm{~m}\left(\mathrm{x}_{\mathrm{i}}+1\right)-2 \mathrm{y}_{\mathrm{i}}+2 \mathrm{~b}-1 \tag{4}
\end{align*}
$$

if d1 - d2 <0 then $\mathrm{y}_{\mathrm{i}+1} \leftarrow \mathrm{y}_{\mathrm{i}}$
if d1 $-\mathrm{d} 2>0$ then $\mathrm{y}_{\mathrm{i}+1} \leftarrow \mathrm{y}_{\mathrm{i}}+1$
We want integer calculations in the loop, but m is not an integer. Looking at definition of m ($\mathrm{m}=\Delta \mathrm{y} / \Delta \mathrm{x}$) we see that if we multiply m by $\Delta \mathrm{x}$, we shall remove the denominator and hence the floating point number.

For this purpose, let us multiply the difference $(\mathrm{d} 1-\mathrm{d} 2)$ by $\Delta \mathrm{x}$ and call it p_{i} :

$$
\mathrm{p}_{\mathrm{i}}=\Delta \mathrm{x}(\mathrm{~d} 1-\mathrm{d} 2)
$$

The sign of p_{i} is the same as the sign of $d 1-d 2$, because of the assumption (3).

Expand p_{i} :

$$
\begin{align*}
\mathrm{p}_{\mathrm{i}} & =\Delta \mathrm{x}(\mathrm{~d} 1-\mathrm{d} 2) \\
& =\Delta \mathrm{x}\left[2 \mathrm{~m}\left(\mathrm{x}_{\mathrm{i}}+1\right)-2 \mathrm{y}_{\mathrm{i}}+2 \mathrm{~b}-1\right] \tag{4}\\
& =\Delta \mathrm{x}\left[2 \cdot(\Delta \mathrm{y} / \Delta \mathrm{x}) \cdot\left(\mathrm{x}_{\mathrm{i}}+1\right)-2 \mathrm{y}_{\mathrm{i}}+2 \mathrm{~b}-1\right] \tag{2}\\
& =2 \cdot \Delta \mathrm{y} \cdot\left(\mathrm{x}_{\mathrm{i}}+1\right)-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{\mathrm{i}}+2 \cdot \Delta \mathrm{x} \cdot \mathrm{~b}-\Delta \mathrm{x} \\
& =2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{\mathrm{i}}+2 \cdot \Delta \mathrm{y}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{\mathrm{i}}+2 \cdot \Delta \mathrm{x} \cdot \mathrm{~b}-\Delta \mathrm{x} \\
& =2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{\mathrm{i}}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{\mathrm{i}}+2 \cdot \Delta \mathrm{y}+2 \cdot \Delta \mathrm{x} \cdot \mathrm{~b}-\Delta \mathrm{x} \tag{7}
\end{align*}
$$

result of multiplication by Δx

Note that the underlined part is constant (it does not change during iteration), we call it c , i.e.

$$
c=2 \cdot \Delta y+2 \cdot \Delta x \cdot b-\Delta x
$$

Hence we can write an expression for p_{i} as:

$$
\begin{equation*}
\mathrm{p}_{\mathrm{i}}=2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{\mathrm{i}}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{\mathrm{i}}+\mathrm{c} \tag{8}
\end{equation*}
$$

Because the sign of p_{i} is the same as the sign of $\mathrm{d} 1-\mathrm{d} 2$, we could use it inside the loop to decide whether to select pixel at $\left(\mathrm{x}_{\mathrm{i}}+1, \mathrm{y}_{\mathrm{i}}\right)$ or at $\left(\mathrm{x}_{\mathrm{i}}+1, \mathrm{y}_{\mathrm{i}}+1\right)$. Note that the loop will only include integer arithmetic. There are now 6 multiplications, two additions and one selection in each turn of the loop.

However, we can do better than this, by defining p_{i} recursively.

$$
\begin{align*}
& \mathrm{p}_{\mathrm{i}+1}=2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{\mathrm{i}+1}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{\mathrm{i}+1}+\mathrm{c} \tag{8}\\
& \mathrm{p}_{\mathrm{i}+1}-\mathrm{p}_{\mathrm{i}}=2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{\mathrm{i}+1}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{\mathrm{i}+1}+\mathrm{c} \\
&-\left(2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{\mathrm{i}}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{\mathrm{i}}+\mathrm{c}\right) \\
&=2 \Delta \mathrm{y} \cdot\left(\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}\right)-2 \Delta \mathrm{x} \cdot\left(\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}}\right) \\
& \mathrm{p}_{\mathrm{i}+1}-\mathrm{p}_{\mathrm{i}}=2 \Delta \mathrm{y}-2 \Delta \mathrm{x} \cdot\left(\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}}\right)
\end{align*}
$$

$$
\mathrm{x}_{\mathrm{i}+1}-\mathrm{x}_{\mathrm{i}}=1 \text { always }
$$

Recursive definition for p_{i} :

$$
\mathrm{p}_{\mathrm{i}+1}=\mathrm{p}_{\mathrm{i}}+2 \Delta \mathrm{y}-2 \Delta \mathrm{x} \cdot\left(\mathrm{y}_{\mathrm{i}+1}-\mathrm{y}_{\mathrm{i}}\right)
$$

If you now recall the way we construct the line pixel by pixel, you will realise that the underlined expression: $y_{i+1}-y_{i}$ can be either 0 (when the next pixel is plotted at the same y coordinate, i.e. $\mathrm{d} 1-\mathrm{d} 2<0$ from (5)); or 1 (when the next pixel is plotted at the next y coordinate, i.e. $\mathrm{d} 1-\mathrm{d} 2>0$ from (6)). Therefore the final recursive definition for p_{i} will be based on choice, as follows (remember that the sign of p_{i} is the same as the sign of $\mathrm{d} 1-\mathrm{d} 2$):

$$
\begin{aligned}
& \text { if } \mathrm{p}_{\mathrm{i}}<0, \mathrm{p}_{\mathrm{i}+1}=\mathrm{p}_{\mathrm{i}}+2 \Delta \mathrm{y} \\
& \text { if } \mathrm{p}_{\mathrm{i}}>0, \mathrm{p}_{\mathrm{i}+1}=\mathrm{p}_{\mathrm{i}}+2 \Delta \mathrm{y}-2 \Delta \mathrm{x}
\end{aligned}
$$

$$
\text { because } 2 \Delta x \cdot\left(y_{i+1}-y_{i}\right)=0
$$

$$
\text { because }\left(y_{i+1}-y_{i}\right)=1
$$

At this stage the basic algorithm is defined. We only need to calculate the initial value for parameter p_{o}.

$$
\begin{align*}
& \mathrm{p}_{\mathrm{i}}=2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{\mathrm{i}}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{\mathrm{i}}+2 \cdot \Delta \mathrm{y}+2 \cdot \Delta \mathrm{x} \cdot \mathrm{~b}-\Delta \mathrm{x} \tag{7}\\
& \mathrm{p}_{0}=2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{0}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{0}+2 \cdot \Delta \mathrm{y}+2 \Delta \mathrm{x} \cdot \mathrm{~b}-\Delta \mathrm{x} \tag{9}
\end{align*}
$$

For the initial point on the line:

$$
\mathrm{y}_{0}=\mathrm{mx}_{0}+\mathrm{b}
$$

therefore

$$
\mathrm{b}=\mathrm{y}_{0}-(\Delta \mathrm{y} / \Delta \mathrm{x}) \cdot \mathrm{x}_{0}
$$

Substituting the above for b in (9)we get:

$$
\begin{aligned}
\mathrm{p}_{0} & =2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{0}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{0}+2 \cdot \Delta \mathrm{y}+2 \Delta \mathrm{x} \cdot\left[\mathrm{y}_{0}-(\Delta \mathrm{y} / \Delta \mathrm{x}) \cdot \mathrm{x}_{0}\right]-\Delta \mathrm{x} \\
& =2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{0}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{0}+2 \cdot \Delta \mathrm{y}+2 \Delta \mathrm{x} \cdot \mathrm{y}_{0}-2 \Delta \mathrm{x} \cdot(\Delta \mathrm{y} / \Delta \mathrm{x}) \cdot \mathrm{x}_{0}-\Delta \mathrm{x} \\
& =2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{0}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{0}+2 \cdot \Delta \mathrm{y}+2 \Delta \mathrm{x} \cdot \mathrm{y}_{0}-2 \Delta \mathrm{y} \cdot \mathrm{x}_{0}-\Delta \mathrm{x} \\
& =2 \cdot \Delta \mathrm{y} \cdot \mathrm{x}_{0}-2 \Delta \mathrm{y} \cdot \mathrm{x}_{0}-2 \cdot \Delta \mathrm{x} \cdot \mathrm{y}_{0}+2 \Delta \mathrm{x} \cdot \mathrm{y}_{0}+2 \cdot \Delta \mathrm{y}-\Delta \mathrm{x} \\
& =2 \cdot \Delta \mathrm{y}-\Delta \mathrm{x}
\end{aligned}
$$

We can now write an outline of the complete algorithm.

Algorithm

1. Input line endpoints, (X1,Y1) and (X2, Y2)
2. Calculate constants:

$$
\Delta \mathrm{x}=\mathrm{X} 2-\mathrm{X} 1
$$

$$
\Delta \mathrm{y}=\mathrm{Y} 2-\mathrm{Y} 1
$$

$2 \Delta y$
$2 \Delta y-\Delta x$
3. Assign value to the starting parameters:

$$
\begin{aligned}
& \mathrm{k}=0 \\
& \mathrm{p}_{0}=2 \Delta \mathrm{y}-\Delta \mathrm{x}
\end{aligned}
$$

4. Plot the pixel at ((X1,Y1)
5. For each integer x-coordinate, x_{k}, along the line
if $p_{k}<0 \quad$ plot pixel at $\left(x_{k}+1, y_{k}\right)$
$\mathrm{p}_{\mathrm{k}+1}=\mathrm{p}_{\mathrm{k}}+2 \Delta \mathrm{y} \quad$ (note that $2 \Delta \mathrm{y}$ is a pre-computed constant)
else \quad plot pixel at $\left(x_{k}+1, y_{k}+1\right)$
$\mathrm{p}_{\mathrm{k}+1}=\mathrm{p}_{\mathrm{k}}+2 \Delta \mathrm{y}-2 \Delta \mathrm{x}$
(note that $2 \Delta y-2 \Delta x$ is a pre-computed constant)
increment k
while $\mathrm{x}_{\mathrm{k}}<\mathrm{X} 2$
