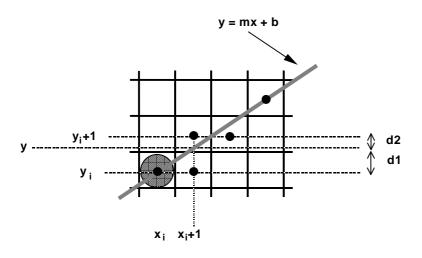
DERIVATION OF THE BRESENHAM'S LINE ALGORITHM

Assumptions:

- input: line endpoints at (X1,Y1) and (X2, Y2)
- X1 < X2
- line slope $\leq 45^{\circ}$, i.e. $0 < m \leq 1$
- x coordinate is incremented in steps of 1, y coordinate is computed
- generic line equation: y = mx + b



Derivation

Assume that we already have a location of pixel (x_i , y_i) and have plotted it. The question is, what is the location of the next pixel.

Geometric location of the line at x-coordinate $x_{i+1} = x_i + 1$ is:

$$y = m(x_i + 1) + b$$
 (1)

where:

$$m = \Delta y / \Delta x \text{ (slope)}$$
(2)

$$b - \text{intercept}$$
(3)

$$\Delta x = X2 - X1 \text{ (from the assumption above that } X1 < X2 \text{)}$$
(3)

Define:

 $\begin{array}{l} d1 = y - y_i = m(x_i + 1 \) + b \ \text{-} \ y_i \\ d2 = (\ y_i + 1 \) \ \text{-} \ y \ = y_i + 1 \ \text{-} \ m(x_i + 1 \) \ \text{-} \ b \end{array}$

Calculate:

$$d1 - d2 = m(x_i + 1) + b - y_i - y_i - 1 + m(x_i + 1) + b$$

= 2m(x_i + 1) - 2y_i + 2b - 1 (4)

$$\begin{array}{l} \text{if } d1 - d2 < 0 \text{ then } y_{i+1} \leftarrow y_i \\ \text{if } d1 - d2 > 0 \text{ then } y_{i+1} \leftarrow y_i + 1 \end{array} \tag{5}$$

We want integer calculations in the loop, but m is not an integer. Looking at definition of m $(m = \Delta y / \Delta x)$ we see that if we multiply m by Δx , we shall remove the denominator and hence the floating point number.

For this purpose, let us multiply the difference (d1 - d2) by Δx and call it p_i :

$$p_i = \Delta x(d1 - d2)$$

The sign of p_i is the same as the sign of d1 - d2, because of the assumption (3).

Expand p_i:

$p_i = \Delta x(d1 - d2)$	
$= \Delta x [2m(x_i + 1) - 2y_i + 2b - 1]$	from (4)
$= \Delta x [2 \cdot (\Delta y / \Delta x) \cdot (x_i + 1) - 2y_i + 2b - 1]$	from (2)
$= 2 \cdot \Delta y \cdot (x_i + 1) - 2 \cdot \Delta x \cdot y_i + 2 \cdot \Delta x \cdot b - \Delta x$	result of multiplication by Δx
$=2{\cdot}\Delta y{\cdot}x_i+2{\cdot}\Delta y-2{\cdot}\Delta x{\cdot}y_i+2{\cdot}\Delta x{\cdot}b-\Delta x$	
$= 2 \cdot \Delta y \cdot x_i - 2 \cdot \Delta x \cdot y_i + \underline{2 \cdot \Delta y} + \underline{2 \cdot \Delta x} \cdot b - \underline{\Delta x}$	(7)

Note that the underlined part is constant (it does not change during iteration), we call it c, i.e. $c = 2 \cdot \Delta y + 2 \cdot \Delta x \cdot b - \Delta x$

Hence we can write an expression for p_i as:

$$\mathbf{p}_{i} = 2 \cdot \Delta \mathbf{y} \cdot \mathbf{x}_{i} - 2 \cdot \Delta \mathbf{x} \cdot \mathbf{y}_{i} + \mathbf{c} \tag{8}$$

Because the sign of p_i is the same as the sign of d1 - d2, we could use it inside the loop to decide whether to select pixel at $(x_i + 1, y_i)$ or at $(x_i + 1, y_i + 1)$. Note that the loop will only include integer arithmetic. There are now 6 multiplications, two additions and one selection in each turn of the loop.

However, we can do better than this, by defining p_i recursively.

$$\begin{aligned} p_{i+1} &= 2 \cdot \Delta y \cdot x_{i+1} - 2 \cdot \Delta x \cdot y_{i+1} + c & \text{from (8)} \\ p_{i+1} &- p_i &= 2 \cdot \Delta y \cdot x_{i+1} - 2 \cdot \Delta x \cdot y_{i+1} + c & \\ &- (2 \cdot \Delta y \cdot x_i - 2 \cdot \Delta x \cdot y_i + c) & \\ &= 2 \Delta y \cdot (x_{i+1} - x_i) - 2 \Delta x \cdot (y_{i+1} - y_i) & x_{i+1} - x_i = 1 \text{ always} \\ p_{i+1} &- p_i &= 2 \Delta y - 2 \Delta x \cdot (y_{i+1} - y_i) \end{aligned}$$

Recursive definition for p_i:

$$p_{i+1} = p_i + 2\Delta y - 2\Delta x \cdot \underline{(y_{i+1} - y_i)}$$

If you now recall the way we construct the line pixel by pixel, you will realise that the underlined expression: $y_{i+1} - y_i$ can be either 0 (when the next pixel is plotted at the same y-coordinate, i.e. d1 - d2 < 0 from (5)); or 1 (when the next pixel is plotted at the next y-coordinate, i.e. d1 - d2 > 0 from (6)). Therefore the final recursive definition for p_i will be based on choice, as follows (remember that the sign of p_i is the same as the sign of d1 - d2):

$ if p_i < 0, \ p_{i+1} = p_i + 2\Delta y \\$	because $2\Delta x \cdot (y_{i+1} - y_i) = 0$
if $p_i > 0$, $p_{i+1} = p_i + 2\Delta y - 2\Delta x$	because $(y_{i+1} - y_i) = 1$

At this stage the basic algorithm is defined. We only need to calculate the initial value for parameter p_0 .

$$p_{i} = 2 \cdot \Delta y \cdot x_{i} - 2 \cdot \Delta x \cdot y_{i} + 2 \cdot \Delta y + 2 \cdot \Delta x \cdot b - \Delta x \qquad \text{from (7)}$$

$$p_0 = 2 \cdot \Delta y \cdot x_0 - 2 \cdot \Delta x \cdot y_0 + 2 \cdot \Delta y + 2 \Delta x \cdot b - \Delta x \tag{9}$$

For the initial point on the line:

 $\mathbf{y}_0 = \mathbf{m}\mathbf{x}_0 + \mathbf{b}$

therefore

 $\mathbf{b} = \mathbf{y}_0 - (\Delta \mathbf{y} / \Delta \mathbf{x}) \cdot \mathbf{x}_0$

Substituting the above for b in (9)we get:

$p_0 = 2 \cdot \Delta y \cdot x_0 - 2 \cdot \Delta x \cdot y_0 + 2 \cdot \Delta y + 2 \Delta x \cdot [y_0 - (\Delta y / \Delta x) \cdot x_0] - \Delta x$	
$=2\cdot\Delta y\cdot x_0-2\cdot\Delta x\cdot y_0+2\cdot\Delta y+2\Delta x\cdot y_0-2\Delta x\cdot (\Delta y/\Delta x)\cdot x_0-\Delta x$	simplify
$=2\cdot\Delta y\cdot x_0-2\cdot\Delta x\cdot y_0+2\cdot\Delta y+2\Delta x\cdot y_0-2\Delta y\cdot x_0-\Delta x$	regroup
$=2{\cdot}\Delta y{\cdot}x_0-2\Delta y{\cdot}x_0-2{\cdot}\Delta x{\cdot}y_0+2\Delta x{\cdot}y_0+2{\cdot}\Delta y-\Delta x$	simplify
$= 2 \cdot \Delta y - \Delta x$	

We can now write an outline of the complete algorithm.

Algorithm

Input line endpoints, (X1,Y1) and (X2, Y2)
 Calculate constants:

 $\Delta x = X2 - X1$ $\Delta y = Y2 - Y1$ $2\Delta y$ $2\Delta y - \Delta x$

3. Assign value to the starting parameters: k = 0

$$\mathbf{p}_0 = 2\Delta \mathbf{y} - \Delta \mathbf{x}$$

if $p_k < 0$

4. Plot the pixel at ((X1,Y1)

5. For each integer x-coordinate, x_k , along the line

plot pixel at ($x_k + 1, y_k$) $p_{k+1} = p_k + 2\Delta y$ (note that $2\Delta y$ is a pre-computed constant)

else plot pixel at ($x_k + 1$, $y_k + 1$) $p_{k+1} = p_k + 2\Delta y - 2\Delta x$ (note that $2\Delta y - 2\Delta x$ is a pre-computed constant)

increment k

while $x_k < X2$