CS 430/536
Computer Graphics |

Line Drawing

Week 1, Lecture 2

David Breen, William Regli and Maxim Peysakhov
Geometric and Intelligent Computing Laboratory
Department of Computer Science
Drexel University

ﬁ http://gicl.cs.drexel.edu
Drexel

P
GICL

Outline

* Math refresher

* Line drawing

+ Digital differential analyzer
 Bresenham’s algorithm
XPM file format

Geometric Preliminaries

» Affine Geometry
— Scalars + Points + Vectors and their ops
Euclidian Geometry
— Affine Geometry lacks angles, distance
— New op: Inner/Dot product, which gives
* Length, distance, normalization
» Angle, Orthogonality, Orthogonal projection
* Projective Geometry

Mathematical Preliminaries

« Vector: an n-tuple of real numbers
* Vector Operations
— Vector addition: u +v=w
+ Commutative,
associative,
identity element (0)

— Scalar multiplication: cv

Note: Vectors and Points are different w
— Can not add points X
— Can find the vector between two points

Affine Geometry

" . i .
« Affine Operations: o
> P-Q
Pé
vector addition point subtraction
vector « scalar - vector, vector « vector[scalar scalar-vector multiplication
vector < vector + vector, vector «— vector — vector vector-vector addition

vector «— point — point

point-point difference
point < point + vector, point « point — vector

point-vector addition
Affine Combinations: o v, + oV, + ... + 0.V,
where v,,v,, ...,v, are vectors and X;o; =1
Example:R=(1-a)P+aQ
R:P+%(Q—P) <0
P 3 P
’\ S~ Q%p \\anc<l
") .0 L

J Wit

¢

4

Linear Combinations &
Dot Products

A linear combination of the vectors

Vi Vy eV,

is any vector of the form

av, oy, + .. tay,

where ¢;is a real number (i.e. a scalar)

Dot Product: n
u-v= Z UV
k=1

areal value uy, +uw,+... +u,y, writenas u°®v

Fun with Dot Products

 Euclidian Distance from (x,y) to (0,0)

[e in general: lxz txle +xl
1 2 n
which is just: [Fo%
» This is also the length of vector v:
llvll or vl R
» Normalization of a vector: ¥V =
» Orthogonal vectors: V=0

=

=

Projections & Angles

« Angle between vectors, O iV =|ii[7|cos(6)
O = ang(i#,v) =cos™! (%) =cos~!(a-7)
* Projection of vectors
i, = gga i, = i—i,

ave Mount @ UMD-CP

Matrices and Matrix Operators

)
* A n-dimensional vector:

* Matrix Operations: z',,
— Addition/Subtraction
— Identity A+B:B+A
— Multiplication
- Scalar A+(B+C)=(A+B)+C
. Mamx.MulTupncanfm (Cd)A _ C(dA)
* Implementation issue:
Where does the index start? 1A=A

(0or1,it's uptoyou...)

c(A+B)=cA+cB
(c+d)A=cA+dA

9

Matrix Multiplication

[C] = [Al[B]

* Sum over rows & columns

» Recall: matrix multiplication
is not commutative

* Identity Matrix: " bu bi bn bia
1s on diagonal ¢ = auby [b b b b

~ b3y b3 §b33§ by
Os everywhere else b bi ba bu

ai ap aps
az axn ax

Matrix Determinants

A single real number n o
Computed recursively det(A) = EA,,,-(—I)H’M[__/-

Example: [, . =1
det =ad -bc
¥

» Uses:

— Find vector ortho to two other vectors
— Determine the plane of a polygon

Cross Product

» Given two non-parallel vectors, A and B

» A x B calculates third vector C that is
orthogonalto A and B

+ AxB=(apb,-ab,ab,-ab, ab, -apb,)

S

X

o]

I
8%

ST

B

z
aZ
b

=
[

S
S

Matrix Transpose & Inverse

. j : _ |2 T
ot Tanspose A= |5] 47=[2]
Facts about (ANHT=4
the transpose: (4 + B)T = A" + BT
(cA)T = c(AT)
(AB)T = BT AT
* Matrix Inverse: Given 4, find B such that
AB=BA =1 B4
(only defined for square matrices)

Line Drawing

Scan-Conversion Algorithms

Scan-Conversion:
Computing pixel
coordinates for

ideal line on

2D raster grid

Pixels best

visualized as circles/
dots

— Why? Monitor hardware

.......................................

Drawing a Line

cy=mx+B
* m=Ay/Ax
+ Start at leftmost x and increment by 1
- Ax =1
* y;= Round(mx; + B)
» This is expensive and inefficient
* Since Ax =1, y =y +Ay=y;+m
— No more multiplication!
* This leads to an incremental algorithm

.

Digital Differential Analyzer

(DDA)
If |slope] is less then 1
= Ax=1
= elseAy=1
Check for vertical line
= m= Yk

Compute corresponding vy,
Ay (Ax) = m (1/m)

Xir1 = Xg + AX

Yt = Yk +AY —
Round (x,y) for pixel location

Issue: Would like to avoid
floating point operations 17

1994 FoleyVanDamFinerHugesiPhils 1CG

Generalizing DDA

* If |slope] is less than or equal to 1
— Ending point should be right of starting
point
* If |slope] is greater than 1
— Ending point should be above starting
point
 Vertical line is a special case
Ax=0

Bresenham’ s Algorithm

* 1965 @ IBM
 Basic Idea:

— Only integer
arithmetic

— Incremental

» Consider the implicit
equation for a line:
f(x,y) =ax+by+c=0

1994 FoleyVanDamFinerHugesiPhils 1CG

The Algorithm
void bresenham(IntPoint g, IntPoint r) {
int dx, dy, D, X, y;
dx = r.x q.x; // line width and height
dy = r.y - q.v;
D = 2*dy - dx; // initial decision value
Yy = a.y; // start at (qg.x,q.y)
for (X = g.X; X <= r.xX; X++) {
writePixel (x, y);
if (D <= 0) D += 2*dy; // below midpoint - go to E
else { // above midpoint - go to NE
D += 2*(dy - dx); y++;

}
}

Assumptions: gx < Tx
0 < slope <1

Pre-computed: 2d, 2(dy —dx) 2

PicsiMath courlesy of Dave Mount @ UMD-CP.

Bresenham’ s Algorithm

Given:
implicit line equation: f(x,y) =ax+by+c=0
Let: dx = 1rx — qx, dy =Ty —4gy

where r and ¢ are points on the line and

d,.d, are positive

a=dy, b= —dy, c=—(qxry—rxqy)

Then:
Observe that all of these are integers

and: f(x,y) < 0 for points above the line
f(x,y) >0 for points below the line

Now..... 21

PicsiMath cortesy of Dave Mount @ UMD-CP.

Bresenham’ s Algorithm

* Suppose we just
finished (Px.pPy)
— (assume 0 < slope < 1) g
other cases symmetric
* Which pixel next?
— Eor NE

fixy) <0

fixy) >0
Py

/7; petl pet2
East (E = (px+1,py))
NorthEast (NE = (px+1,py + 1))

22

PicsiMath courlesy of Dave Mount @ UMD-CP.

Bresenham’ s Algorithm

Assume:
*« Q=exactyvalueat x=px+1

+ y midway between E and NE: M = py+1/2
Observe:

If 0 <M, then pick E »*!

fixy) <0

ftxy) >0

Else pick NE
p » @@
If Q = M Px Prtl Prt2
it doesn’ t matter 2

PicsiMath courlesy of Dave Mount @ UMD-CP

Bresenham’ s Algorithm

« Create “modified” implicit function (2x)
f(x,y) =2ax+2by+2¢c=0

» Create a decision variable D to select,
where D is the value of f at the midpoint:
D f(px+1,py+(1/2))

1
o _ Za(,,x+1)+2b(py+2>+2c

= 2api+2bpy+ (2a+b+2c)

24

PicsiMath courlesy of Dave Mount @ UMD-CP.

Bresenham’ s Algorithm

* If D> 0 then M is below the line f(x,y)
— NE is the closest pixel

« If D <0 then M is above the line f(x.)
— E is the closest pixel

fixy) <0
NE
Py+1
M ftxy) >0
Py 5
Px P+l pet2 25

Bresenham’ s Algorithm

« If D> 0 then M is below the line f(x,y)
— NE is the closest pixel

 If D<0 then M is above the line f(x,y)
— E is the closest pixel

* Note: because we multiplied by 2x, D is
now an integer---which is very good news

* How do we make this incremental??

26

Case I: When E is next

* What increment for computing a new D?
* Next midpoint is: (px+2,py+(1/2))

Dnew = f(px+2;]7y+(1/2))
1
o = 2a([’x+2)+2b<Py+2)+2C
w G = 2ape+2bpy+ (dat b+ 20)
> ﬂ_\/ &: = 2“Px+2bpy+(2a+b+26)+2a
roomtom = D+2a=D+2d,

* Hence, increment by: 24,

27

Pics/Math courlesy of Dave Mount @ UMD-CP

Case II: When NE is next

» What increment for computing a new D?
+ Next midpoint is: (px +2,py +1+(1/2))
Dyeyy = f(px+2,py+1+(1/2))
3
= 2a(px+2)+2b (py+ 2) +2c
2apy +2bpy+ (4a+3b+2c)
2apy +2bpy+ (2a+b+2c) + (2a+ 2b)
= D+2(a+b)=D+2(dy—d;)
* Hence, increment by: 2(d, —dx)
28

PicsiMath courlesy of Dave Mount @ UMD-CP.

How to get an initial value for D?

» Suppose we start at: (4x,9y)
* Initial midpoint is: (¢x+1,qy+1/2)
Then:

Dy, = f(‘Ix+17‘Iy+ 1/2)

1
= 2a(ge+1)+2b qy+2)+2c
= (2aqx+2bgy+2c)+ (2a+b)
= 0+2a+b
= 2d,—d,

29

PicsiMath courlesy of Dave Mount @ UMD-CP

The Algorithm

void bresenham(IntPoint g, IntPoint r) {
int dx, dy, D, x, y;

dx = r.x - q.x; // line width and height
dy = r.y - a.v;

D = 2*dy - dx; // initial decision value
Yy = a.y; // start at (q.x,q.y)

for (x = q.x; X <= r.x; x++) {
writePixel (x, y);
if (D <= 0) D += 2*dy; // below midpoint - go to E
else { // above midpoint - go to NE
D 4= 2%(dy - GX); y++;
}
}

Assumptions: gx < Tx
0 <slope <1

Pre-computed: 2d, 2(dy —dx) .

PicsiMath couresy of Dave Mount @ UMD-CP.

Generalize Algorithm

If g, > r,, swap points

If slope > 1, always increment vy,
conditionally increment x

If -1 <= slope < 0, always increment x,
conditionally decrement y

If slope < -1, always decrement vy,
conditionally increment x

Rework D increments

Generalize Algorithm

» Reflect line into first case
+ Calculate pixels

 Reflect pixels back into original
orientation

32

Bresenham’ s Algorithm:
Example

A Y Flxy) = 2(Y,x -X,) =0

Fxy) =2(5x -7y) =0

(7.5)

(0,0) X

Bresenham’ s Algorithm:
Example

(7.,5)

34

Bresenham’ s Algorithm:
Example

(7.5)

Bresenham’ s Algorithm:
Example

2

36

Bresenham’ s Algorithm:
Example

(1.5)

9%
Pt

Bresenham’ s Algorithm:
Example

.%r/

(7.5)

38

Bresenham’ s Algorithm:
Example

(1.5)

.%r/

Bresenham’ s Algorithm:
Example

(7.5)

o

.%r/

40

Bresenham’ s Algorithm:

Example
. P 1 .

o

.%r/

0

Some issues with
Bresenham’ s Algorithms

Pixel ‘density’ varies

Line B
based on slope 4 2
— straight lines look ‘0
darker, more pixels per *G
unit length %
— Endpoint order ““

— Line from P1 to P2 2
should match P2to P1 @
— Always choose E when GSSSSSSSSd Line A

hitting M, regardless of
direction

1994 FoleyVanDamFinerHugesiPhils 1CG

XPM Format

* Encoded pixels
* C code

Te ncs.drexel.edu
Fie Edt Optons Buffers Tooks Hep
B won v

uad dwsgm 72100 (Texe Ao

=lolx|

Fie Edit Image Options

o 49 x 184x84/a[100 94559 KB

« ASCII Text file

« Viewable on Unix
w/ display

* On Windows with
IrfanView

« Translate w/
convert 44

XPM Basics

X PixelMap (XPM)

Native file format in X Windows

Color cursor and icon bitmaps

Files are actually C source code

Read by compiler instead of viewer
Successor of X BitMap (XBM) B-W format

45

[£2 quad.xpm - TrfanVieWiisI (= 3|

Fle Edt Image Options

View Help

XPM Supports Color

SEHEX 2R O (]

|

249 x 184 x 8 3/4[100 9/94.29KB ,

XPM: Defining Grayscales
and Colors

Each pixel specified by an ASCII char

key describes the context this color should be
used within. You can always use “c” for
“color”.

Colors can be specified:

— color name

— “#” followed by the RGB code in hexadecimal
RGB — 24 bits (2 characters ‘0’ - ‘£”) for each
color.

47

XPM: Specifying Color

Color Name RGB Color
black # 00 oo oo | NN
white £ £ | []

808080 | [
red # ££ 00 00 I
green # 00 £f oo | [N
blue # 00 00 ££ | [

48

* Array of C strings

+ The XPM format assumes the

XPM Example

i xam

static char *scol00[] = {

/% width height num_colors chars_per_pixel %/
"7741",

origin (0,0) is in the upper left- 4 colors */

hand corner. - .
First string is “width height
ncolors cpp”

Then you have "ncolors" strings

associating characters with
colors.

And last you have "height"
strings of "width" *
"chars_per_pixel" characters

49

Programming assignment 1

Input PostScript-like file
Output B/W XPM
Primary 1/0 formats for the course

Create data structure to hold points and lines
in memory (the world model)

Implement 2D translation, rotation and scaling
of the world model

Implement line drawing and clipping
January 20th
Get started now!

Questions?

Go to Assignment 1

52

