
An efficient circle drawing algorithm

This is a documentation of a lecture of mine, which I have given several times since 1997 to motivate the use of 
mathematics in programming. I thought it was about time I wrote something down. The problem of drawing a 
straight line is treated in most computer graphics textbooks, mostly by presenting the rightfully famous Bresen-
ham line algorithm, but the circle variant is not often seen in the literature. I make absolutely no claim of having 
invented this algorithm, but it seems to have fallen into oblivion. The only place I have seen this kind of stuff 
lately is in the nerdy but highly entertaining book “A trip down the graphics pipeline” by Jim Blinn, where he pre-
sents the Bresenham circle algorithm along with a plethora of other circle algorithms.

What I present here is a slightly different algorithm, avoiding a quirk in the Bresenham derivation which I find 
hard to follow. The two algorithms are almost identical. In fact, they plot exactly the same pixels except for a few 
rare cases, and where they differ, both can be said to be correct.1
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The problem
We want to design a highly efficient algorithm to draw a circle outline on a pixel-based com-
puter display, using only the primitive function of setting a single pixel.

Moving into pixel space
First, we need to make the mental leap of looking at the problem from the perspective of a 
computer program. The problem of which pixels to plot boils down to three basic steps:

1. Pick a good pixel to start the drawing.
2. Decide which pixel to plot next.
3. Repeat from step 2 until the circle is done.
The algorithm is, not surprisingly, a loop. Let the circle radius be R, and let’s assume we are 
plotting the circle with its midpoint at (0,0). Good starting points are (R, 0) or (0, R). Let’s pick 
(0, R).

We then observe that a circle is a highly symmetric shape. If we plot all pixels in the second 
octant, from the y-axis going right to the line , we can plot the rest of the circle by mir-
roring the pixel coordinates, like so:
plot(x,y) // Second octant
plot(x,-y) // Seventh octant
plot(-x,y) // Third octant
plot(-x,-y) // Sixth octant
plot(y,x) // First octant
plot(y,-x) // Eighth octant
plot(-y,x) // Fourth octant
plot(-y,-x) // Fifth octant

The criterion for when we leave the second octant and step into the first octant is conveniently 
expressed as “stop when ”.

So, that takes care of step 1 and 3 of the loop, and the actual plotting. Now for step 2, which is 
the difficult part.

1. Actually, both are very slightly wrong, but in different ways. The small errors in both algorithms can 
be attributed to an approximation of the distance from a position on the pixel grid to the circle outline. 
Finding the true Euclidean distance involves taking the square root of a second order polynomial in x 
and y. Both algorithms instead use the value of a second order polynomial directly, without the square 
root, and the actual polynomials used for the two algorithms are ever so slightly different.
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Tracing the circle
To trace the outline of the circle, we observe that the circle equation  gives us a 
convenient way of knowing whether we are inside or outside of the circle. The function 

 is negative inside the circle, positive outside, and zero on the circle.

In the second octant, the slope of the curve is always in the range 0 to -1, so a pixel train 
approximating the curve should be built from only two elementary steps:

A) Take one step to the right: , 

B) Take one step to the right and one step down:
, 

To decide which of the two candidates for the next pixel is the closest, A 
or B, we check whether the midpoint between the two pixels, 

 is outside or inside the circle, which means that we 
want to evaluate the function  at that point. We will use this value a lot henceforth, so we 
give it a name of its own, :

This trick gives our algorithm its name: “the midpoint algorithm”. If , the midpoint is 
outside the circle and pixel B is closest, and if , the midpoint is inside the circle and pixel 
A is closest. If , the midpoint is precisely on the circle, and either case could be picked.

At this stage, we can write down an algorithm that works, even if it is still inefficient:

1. Set , , .

2. Plot pixels , , , , , , , .

3. If , set , else set 

4. Set 

5. If , increment  and repeat from 2, else stop.
This algoritm has a serious flaw: it requires too much calculation for the test in the inner loop. 
Taking two squares for each pixel is quite costly. Fortunately for us, there is a remedy.

Forward differences
We can get rid of most of the calculations in the inner loop quite easily by a simple observa-
tion: the loop calculates a value  for each midpoint, and then moves on to an adjacent pixel. 
For case A above, the next midpoint to test is , and for case B, the next mid-
point is . For the two cases, we can easily express  in terms of :

For case A, we have:

and similarly for case B, we have:
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Thus, we can now express our algorithm in a more efficient manner as follows:

1. Set , , , .

2. Plot the pixels at  etc.

3. If , set  and ,

else set  and 

4. Set .

5. If , increment  and repeat from 2, else stop.
The only operations left in the inner loop is now a few additions. (The multiplications by 2 are 
easily implemented as bit shift operations, so they don’t count as multiplications.) This is a lot 
faster than before, and we could implement this in some programming language and expect a 
fast performance. We can, however, take our simplifications one step further, and for the sake 
of completeness, we will.

Second order forward differences
In each step of the loop above, we add either  or . Observing that we in the 
immediately preceding step added  or , and that we know that 

 and either  or , we can save our increments to  in 
two additional variables and save some work at the cost of a minimal amount of extra storage.

Introduce two more variables,  and , and we can rewrite the algorithm as follows:

1. Set , , , , , .

2. Plot the pixels at  etc.

3. If , set , , 

else set  and , 

4. Set  and .

5. If , increment  and repeat from 2, else stop.
The final algorithm is conspicuously devoid of complicated arithmetic, despite the fact that it 
draws a very acccurate rendition of a quadratic curve. Neat, isn’t it?

One last speedup: to get rid of the fraction  and use ony integer arithmetic, we can multi-
ply everything by 4. Some pseudo-code to help you follows. Now go ahead and implement this 
in your programming language of choice and see that it really works. Good luck!

x=0; y=R; d=5-4*R;
dA=12; dB=20-8*R;
while (x<y)

plot(x,y);
if(d<0)

d=d+dA; dB=dB+8;
else

y=y-1;
d=d+dB; dB=dB+16;

end if
x=x+1; dA=dA+8;

end while
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