
chapter 35

bresenham is fast , and fast is good

For all the complexity~,of graphics design and programming, surprisingly few primi-
tive functions lie at the.& &&most graphics software. Heavily used primitives include
routines that draw dati cles, area fills, bit block logical transfers, and, of course,
lines. For many ye&, computer graphics were created primarily with specialized
line-drawing hardware, so lines are in a way the Zinguafranca of computer graphics.
Lines are jii de variety of microcomputer graphics applications today, nota-

Probably the best-khown formula for drawing lines on a computer display is called
Bresenham’s line-drawing algorithm. (We have to be specific here because there is
also a less-well-known Bresenham’s circle-drawing algorithm.) In this chapter, 1’11
present two implementations for the EGA and VGA of Bresenham’s line-drawing
algorithm, which provides decent line quality and excellent drawing speed.
The first implementation is in rather plain C, with the second in not-so-plain assem-
bly, and they’re both pretty good code. The assembly implementation is damned
good code, in fact, but ifyou want to know whether it’s the fastest Bresenham’s imple-
mentation possible, I must tell you that it isn’t. First of all, the code could be sped up
a bit by shuffling and combining the various error-term manipulations, but that re-
sults in truly cryptic code. I wanted you to be able to relate the original algorithm to
the final code, so I skipped those optimizations. Also, write mode 3, which is unique

. + “ l .

bly CAD/ ,, computer-aided engineering.

655

to the VGA, could be used for considerably faster drawing. I’ve described write mode
3 in earlier chapters, and I strongly recommend its use in VGA-only line drawing.
Second, horizontal, vertical, and diagonal lines could be special-cased, since those
particular lines require little calculation and can be drawn very rapidly. (This is espe-
cially true of horizontal lines, which can be drawn 8 pixels at a time.)
Third, run-length slice line drawing could be used to significantly reduce the num-
ber of calculations required per pixel, as I’ll demonstrate in the next two chapters.
Finally, unrolled loops and/or duplicated code could be used to eliminate most of the
branches in the final assembly implementation, and because x86 processors are notori-
ously slow at branching, that would make quite a difference in overall performance. If
you’re interested in unrolled loops and similar assembly techniques, I refer you to the
first part of this book.
That brings us neatly to my final point: Even if I didn’t know that there were further
optimizations to be made to my line-drawing implementation, I’d assume that there
were. As I’m sure the experienced assembly programmers among you know, there
are dozens of ways to tackle any problem in assembly, and someone else always seems
to have come up with a trick that never occurred to you. I’ve incorporated a sugges-
tion made by Jim Mackraz in the code in this chapter, and I’d be most interested in
hearing of any other tricks or tips you may have.
Notwithstanding, the linedrawing implementation in Listing 35.3 is plentyfast enough
for most purposes, so let’s get the discussion underway.

The Task at Hand
There are two important characteristics of any linedrawing function. First, it must
draw a reasonable approximation of a line. A computer screen has limited resolu-
tion, and so a line-drawing function must actually approximate a straight line by
drawing a series of pixels in what amounts to a jagged pattern that generally pro-
ceeds in the desired direction. That pattern of pixels must reliably suggest to the
human eye the true line it represents. Second, to be usable, a line-drawing function
must befast. Minicomputers and mainframes generally have hardware that performs
line drawing, but most microcomputers offer no such assistance. True, nowadays
graphics accelerators such as the S3 and AT1 chips have line drawing hardware, but
some other accelerators don’t; when drawing lines on the latter sort of chip, when
drawing on the CGA, EGA, and VGA, and when drawing sorts of lines not supported
by line-drawing hardware as well, the PC’s CPU must draw lines on its own, and, as
many users of graphics-oriented software know, that can be a slow process indeed.
Line drawing quality and speed derive from two factors: The algorithm used to draw
the line and the implementation of that algorithm. The first implementation (writ-
ten in Borland C++) that I’ll be presenting in this chapter illustrates the workings of
the algorithm and draws lines at a good rate. The second implementation, written in

656 Chapter 35

assembly language and callable directly from Borland C++, draws lines at extremely
high speed, on the order of three to six times faster than the C version. Between
them, the two implementations illuminate Bresenham’s line-drawing algorithm and
provide high-performance line-drawing capability.
The difficulty in drawing a line lies in generating a set of pixels that, taken together,
are a reasonable facsimile of a true line. Only horizontal, vertical, and 1:l diagonal
lines can be drawn precisely along the true line being represented; all other lines
must be approximated from the array of pixels that a given video mode supports, as
shown in Figure 35.1.
Considerable thought has gone into the design of line-drawing algorithms, and a
number of techniques for drawing high-quality lines have been developed. Unfortu-
nately, most of these techniques were developed for powerful, expensive graphics
workstations and require very high resolution, a large color palette, and/or floating-
point hardware. These techniques tend to perform poorly and produce less visually
impressive results on all but the best-endowed PCs.
Bresenham’s line-drawing algorithm, on the other hand, is uniquely suited to micro-
computer implementation in that it requires no floating-point operations, no divides,
and no multiplies inside the line-drawing loop. Moreover, it can be implemented
with surprisingly little code.

Bresenham’s Line-Drawing Algorithm
The key to grasping Bresenham’s algorithm is to understand that when drawing an
approximation of a line on a finite-resolution display, each pixel drawn will lie either
exactly on the true line or to one side or the other of the true line. The amount by
which the pixel actually drawn deviates from the true line is the mor of the line

0 0 0 0 0 0 0

@ 0 0 0 0 0 0

Approximating a true line from a pixel array.
Figure 35.1

Bresenham Is Fast, and Fast Is Good 657

drawing at that point. As the drawing of the line progresses from one pixel to the
next, the error can be used to tell when, given the resolution of the display, a more
accurate approximation of the line can be drawn by placing a given pixel one unit of
screen resolution away from its predecessor in either the horizontal or the vertical
direction, or both.
Let’s examine the case of drawing a line where the horizontal, or X length of the line
is greater than the vertical, or Y length, and both lengths are greater than 0. For
example, suppose we are drawing a line from (0,O) to (5,2), as shown in Figure 35.2.
Note that Figure 35.2 shows the upper-left-hand corner of the screen as (O,O), rather
than placing (0,O) at its more traditional lower-left-hand corner location. Due to the
way in which the PC’s graphics are mapped to memory, it is simpler to work within
this framework, although a translation of Y from increasing downward to increasing
upward could be effected easily enough by simply subtracting the Y coordinate from
the screen height minus 1; if you are more comfortable with the traditional coordi-
nate system, feel free to modify the code in Listings 35.1 and 35.3.
In Figure 35.2, the endpoints of the line fall exactly on displayed pixels. However, no
other part of the line squarely intersects the center of a pixel, meaning that all other
pixels will have to be plotted as approximations of the line. The approach to ap-
proximation that Bresenham’s algorithm takes is to move exactly 1 pixel along the
major dimension of the line each time a new pixel is drawn, while moving 1 pixel
along the minor dimension each time the line moves more than halfway between
pixels along the minor dimension.
In Figure 35.2, the X dimension is the major dimension. This means that 6 dots, one
at each of X coordinates 0,1,2,3,4, and 5, will be drawn. The trick, then, is to decide
on the correct Y coordinates to accompany those X coordinates.

I 0 1 2 3 4 5 6

3 0 0 0 0 0 0 0

Drawing between two pixel endpoints.
Figure 35.2

658 Chapter 35

It’s easy enough to select the Y coordinates by eye in Figure 35.2. The appropriate Y
coordinates are 0, 0, 1, 1, 2, 2, based on the Y coordinate closest to the line for each
X coordinate. Bresenham’s algorithm makes the same selections, based on the same
criterion. The manner in which it does this is by keeping a running record of the
error of the line-that is, how far from the true line the current Y coordinate is-at
each X coordinate, as shown in Figure 35.3. When the running error of the line
indicates that the current Y coordinate deviates from the true line to the extent that
the adjacent Y coordinate would be closer to the line, then the current Y coordinate
is changed to that adjacent Y coordinate.
Let’s take a moment to follow the steps Bresenham’s algorithm would go through in
drawing the line in Figure 35.3. The initial pixel is drawn at (O,O), the starting point
of the line. At this point the error of the line is 0.
Since X is the major dimension, the next pixel has an X coordinate of 1. The Y
coordinate of this pixel will be whichever of 0 (the last Y coordinate) or 1 (the adja-
cent Ycoordinate in the direction of the end point of the line) the true line at this X
coordinate is closer to. The running error at this point is B minus A, as shown in
Figure 35.3. This amount is less than 1/2 (that is, less than halfway to the next Y
coordinate), so the Y coordinate does not change at X equal to 1. Consequently, the
second pixel is drawn at (1 ,0).
The third pixel has an X coordinate of 2. The running error at this point is C minus
A, which is greater than 1/2 and therefore closer to the next than to the current Y
coordinate. The third pixel is drawn at (2,1), and 1 is subtracted from the running
error to compensate for the adjustment of one pixel in the current Y coordinate.
The running error of the pixel actually drawn at this point is C minus D.

0 1 2 3 4 5 6

3 0 0 0 0 0 0 0

The error term in Bresenham k algorithm.
Figure 35.3

Bresenham Is Fast, and Fast Is Good 659

The fourth pixel has an X coordinate of 3. The running error at this point is E minus
D; since this is less than 1/2, the current Y coordinate doesn’t change. The fourth
pixel is drawn at (3 , l) .
The fifth pixel has an X coordinate of 4. The running error at this point is F minus
D; since this is greater than 1/2, the current Y coordinate advances. The third pixel
is drawn at (4,Z) , and 1 is subtracted from the running error. The error of the pixel
drawn at this point is G minus F.
Finally, the sixth pixel is the end point of the line. This pixel has an X coordinate of
5. The running error at this point is G minus G, or 0, indicating that this point is
squarely on the true line, as of course it should be given that it’s the end point, so the
current Y coordinate remains the same. The end point of the line is drawn at (5,2),
and the line is complete.
That’s really all there is to Bresenham’s algorithm. The algorithm is a process of
drawing a pixel at each possible coordinate along the major dimension of the line,
each with the closest possible coordinate along the minor dimension. The running
error is used to keep track of when the coordinate along the minor dimension must
change in order to remain as close as possible to the true line. The above description
of the case where X is the major dimension, Y is the minor dimension, and both
dimensions are greater than zero is readily generalized to all eight octants in which
lines could be drawn, as we will see in the C implementation.
The above discussion summarizes the nature rather than the exact mechanism of
Bresenham’s linedrawing algorithm. I’ll provide a brief seat-of-the-pants discussion
of the algorithm in action when we get to the C implementation of the algorithm;
for a full mathematical treatment, I refer you to pages 433-436 of Foley and Van
Dam’s Fundamentals ofInteractive Computer Graphics (Addison-Wesley, 1982) , or pages
72-78 of the second edition of that book, which was published under the name
Computer Graphics: Principles and Practice (Addison-Wesley, 1990). These sources pro-
vide the derivation of the integer-only, divide-free version of the algorithm, as well as
Pascal code for drawing lines in one of the eight possible octants.

Strengths and Weaknesses
The overwhelming strength of Bresenham’s line-drawing algorithm is speed. With
no divides, no floating-point operations, and no need for variables that won’t fit in
16 bits, it is perfectly suited for PCs.
The weakness of Bresenham’s algorithm is that it produces relatively low-quality lines
by comparison with most other line-drawing algorithms. In particular, lines gener-
ated with Bresenham’s algorithm can tend to look a little jagged. On the PC, however,
jagged lines are an inevitable consequence of relatively low resolution and a small
color set, so lines drawn with Bresenham’s algorithm don’t look all that much differ-
ent from lines drawn in other ways. Besides, in most applications, users are far more

660 Chapter 35

interested in the overall picture than in the primitive elements from which that pic-
ture is built. As a general rule, any collection of pixels that trend from point A to
point B in a straight fashion is accepted by the eye as a line. Bresenham’s algorithm
is successfully used by many current PC programs, and by the standard of this wide
acceptance the algorithm is certainly good enough.
Then, too, users hate waiting for their computer to finish drawing. By any standard
of drawing performance, Bresenham’s algorithm excels.

An Implementation in C
It’s time to get down and look at some actual working code. Listing 35.1 is a C imple-
mentation of Bresenham’s line-drawing algorithm for modes OEH, OFH, IOH, and
12H of the VGA, called as function EVGALiie. Listing 35.2 is a sample program to
demonstrate the use of EVGALine.

LISTING 35.1 135- 1 .C
/ *
* C i m p l e m e n t a t i o n o f B r e s e n h a m ’ s l i n e d r a w i n g a l g o r i t h m
* f o r t h e EGA and VGA. Works i n modes OxE. OxF. 0x10. and 0x12.

* C o m p i l e d w i t h B o r l a n d C++

* By Michael Abrash
*/

*

*

#i ncl ude <dos . h> / * c o n t a i n s MK-FP macro * /

d e f i n e EVGA-SCREEN-WIDTHKIN-BYTES 80
/* memory o f f s e t f r o m s t a r t o f

one row t o s t a r t o f n e x t * /
d e f i n e EVGA-SCREEN-SEGMENT OxAOOO

{{define GCINDEX Ox3CE
/* d i s p l a y memory segment * /

/ * G r a p h i c s C o n t r o l 1 e r
I n d e x r e g i s t e r p o r t * /

l d e f i ne GC-DATA Ox3CF
/ * G r a p h i c s C o n t r o l l e r

D a t a r e g i s t e r p o r t * /
d e f i n e SET-RESET-INDEX 0 / * i n d e x e s o f n e e d e d * /
d e f i n e ENABLELSETLRESET-INDEX 1 I* G r a p h i c s C o n t r o l l e r * /
d e f i n e BIT-MASK-INDEX 8 / * r e g i s t e r s * /

/ *
* Draws a d o t a t (X O . Y O) i n w h a t e v e r c o l o r t h e EGA/VGA hardware i s
* s e t up f o r . L e a v e s t h e b i t mask s e t t o w h a t e v e r v a l u e t h e
* d o t r e q u i r e d .
* I

v o i d EVGADot(X0, Y O)
u n s i g n e d i n t X O : / * c o o r d i n a t e s a t w h i c h t o d r a w d o t , w i t h * I
u n s i g n e d i n t Y O : / * (0 .0) a t t h e u p p e r l e f t o f t h e s c r e e n * /
{

u n s i g n e d c h a r f a r * P i x e l B y t e P t r :
uns igned cha r P i xe lMask ;

Bresenham Is Fast, and Fast Is Good 661

/ * C a l c u l a t e t h e o f f s e t i n t h e s c r e e n s e g m e n t o f t h e b y t e i n

P i x e l B y t e P t r - MK-FP(EVGA-SCREEN-SEGMENT.
w h i c h t h e p i x e l l i e s * /

(Y O * EVGA-SCREEN-WIDTH-IN-BYTES) + (X0 / 8) I ;

/* Generate a mask w i t h a 1 b i t i n t h e p i x e l ' s p o s i t i o n w i t h i n t h e

P ixe lMask - Ox80 >> (X0 & 0x07 1;

/* S e t u p t h e G r a p h i c s C o n t r o l l e r ' s B i t Mask r e g i s t e r t o a l l o w

s c r e e n b y t e * /

o n l y t h e b i t c o r r e s p o n d i n g t o t h e p i x e l b e i n g d r a w n t o
b e m o d i f i e d * /

outportb(GC-INDEX. BIT-MASK-INDEX);
outportb(GC-DATA. PixelMask);

/ * D r a w t h e p i x e l . B e c a u s e o f t h e o p e r a t i o n o f t h e s e t i r e s e t
f e a t u r e o f t h e EGA/VGA. t h e v a l u e w r i t t e n d o e s n ' t m a t t e r .
The s c r e e n b y t e i s ORed i n o r d e r t o p e r f o r m a r e a d t o l a t c h t h e
d i s p l a y memory. t h e n p e r f o r m a w r i t e i n o r d e r t o m o d i f y it. * I

1
* P i x e l B y t e P t r 1 - OxFE:

/ *
* Draws a l i n e i n o c t a n t 0 o r 3 (I D e l t a X J >- De l taY) .
*/

vo id Oc tan tO(X0 . Y O , D e l t a X . D e l t a Y . X D i r e c t i o n)
u n s i g n e d i n t X O . Y O : / * c o o r d i n a t e s o f s t a r t o f t h e l i n e * /
u n s i g n e d i n t D e l t a X . De l taY ; / * l e n g t h o f t h e l i n e (b o t h > 0) * /
i n t X D i r e c t i o n : I* 1 i f l i n e i s drawn l e f t t o r i g h t ,

I
-1 i f d r a w n r i g h t t o l e f t * /

i n t Del taYx2;
i n t Del taYx2MinusDel taXx2;
i n t E r r o r T e r m :

/* Set up i n i t i a l e r r o r t e r m a n d v a l u e s u s e d i n s i d e d r a w i n g l o o p */
De l taYx2 - De l taY * 2:
Del taYx2MinusDel taXx2 - De l taYx2 - (i n t) (De l taX * 2 1;
E r ro rTe rm - De l taYx2 - (i n t) D e l t a X :

/ * D r a w t h e l i n e * /
EVGADot(X0. Y O) ; I* d r a w t h e f i r s t p i x e l * /
w h i l e (D e l t a X - -) (

/ * See i f i t ' s t i m e t o advance t he Y c o o r d i n a t e * /
i f (E r ro rTe rm >- D) {

back down * /
/* Advance the Y c o o r d i n a t e & a d j u s t t h e e r r o r t e r m

YO++;
E r ro rTe rm +- Del taYx2MinusDel taXx2;

I e l s e {
/ * Add t o t h e e r r o r t e r m */
Er ro rTe rm +- Oel taYx2:

1
X0 +- X D i r e c t i o n ; / * advance the X c o o r d i n a t e * /
EVGADot(XD. Y O) ; /* draw a p i x e l * /

1
1

/*
* Draws a l i n e i n o c t a n t 1 or 2 (I D e l t a X l < De l taY 1.
* /

662 Chapter 35

v o i d O c t a n t l (X 0 . Y O , D e l t a X . D e l t a Y . X D i r e c t i o n)
u n s i g n e d i n t X O . Y O : / * c o o r d i n a t e s o f s t a r t o f t h e l i n e * /
u n s i g n e d i n t D e l t a X . D e l t a Y : I* l e n g t h o f t h e l i n e (b o t h > 0) * I
i n t X D i r e c t i on : I* 1 i f l i n e i s drawn l e f t t o r i g h t ,

{
-1 i f drawn r i g h t t o l e f t * I

i n t D e l t a X x 2 ;
i n t D e l t a X x Z M i n u s D e l t a Y x 2 :
i n t Er ro rTerm:

/ * Set up i n i t i a l e r r o r t e r m and va lues
De l taXxZ - Del taX * 2:
De l taXxZMinusDel taYx2 - Del taXx2 - (i n t
E r r o r T e r m - Del taXx2 - (i n t) D e l t a Y :

u s e d i n s i d e d r a w i n g l o o p *I

) (De l taY * 2) :

EVGADot(X0. Y O) : I* d r a w t h e f i r s t p i x e l * I
w h i l e (D e l t a Y - -) [

/* See i f i t ' s t i m e t o advance the X c o o r d i n a t e *I
i f (E r r o r T e r m >- 0 1 (

I* Advance the X c o o r d i n a t e & a d j u s t t h e e r r o r t e r m
back down *I

X0 +- X D i r e c t i o n ;
E r r o r T e r m +- De l taXx2MinusDel taYx2:

I* Add t o t h e e r r o r t e r m * /
E r r o r T e r m +- De l taXxZ:

1 e l s e {

1
YO++: I* advance the Y c o o r d i n a t e * I
EVGADot(X0. Y O) : I* draw a p i x e l *I

1
1

I*
* Draws a l i n e on t h e EGA o r VGA.
* I

void EVGALine(X0. Y O , X 1 . Y 1 . C o l o r)
i n t X O , Y O : I* c o o r d i n a t e s o f o n e e n d o f t h e l i n e *I
i n t X 1 . Y 1 : / * c o o r d i n a t e s o f t h e o t h e r e n d o f t h e l i n e * /
c h a r C o l o r : I* c o l o r t o draw 1 i n e i n * I
I

i n t D e l t a X . D e l t a Y :
i n t Temp:

I* S e t t h e d r a w i n g c o l o r * I

I* P u t t h e d r a w i n g c o l o r i n t h e S e t / R e s e t r e g i s t e r *I
outportb(GC-INDEX, SET-RESETLINDEX):
outportb(GC_DATA. Color) ;
/ * Cause a l l p l a n e s t o b e f o r c e d t o t h e S e t / R e s e t c o l o r * /
outportb(GC_INDEX. ENABLELSET-RESETLINDEX):
outportb(GC_DATA, OxF);

/ * Save h a l f t h e l i n e - d r a w i n g c a s e s b y s w a p p i n g Y O w i t h Y 1
and X0 w i t h X 1 i f Y O i s g r e a t e r t h a n Y 1 . As a r e s u l t , D e l t a Y
i s always > 0 , a n d o n l y t h e o c t a n t 0 - 3 cases need t o be
hand1 ed. *I

i f (Y O > Y 1) I
Temp - Y O ;
Y O - Y 1 :
Y 1 - Temp;
Temp - X O :

Bresenham Is Fast, and Fast Is Good 663

x0 - x1:
X 1 - Temp:

}

/ * H a n d l e a s f o u r s e p a r a t e c a s e s , f o r t h e f o u r o c t a n t s i n w h i c h

De l taX - X 1 - X O : / * c a l c u l a t e t h e l e n g t h o f t h e l i n e

De l taY - Y 1 - Y O :
i f (De l taX > 0) I

Y 1 i s g r e a t e r t h a n Y O * /

i n e a c h c o o r d i n a t e * I

i f (De l taX > De l taY {

} e l s e {

1
1 e l s e {

De l taX = -Del t a x : / * a b s o l u t e v a l u e o f D e l t a X * I
i f (D e l t a X > De l taY {

1 e l s e {

1

OctantO(X0. Y O , D e l t a X . D e l t a Y . 1);

O c t a n t l (X 0 , Y O , De l taX , De l taY . 1):

OctantO(X0, Y O , De l taX . De l taY . -1):

O c t a n t l (X 0 . Y O , De l taX . De l taY . -1) :

1

/* R e t u r n t h e s t a t e o f t h e E G A I V G A t o normal *I
outportb(GC-INDEX. ENABLE-SET-RESET-INDEX):
outportb(GC-DATA. 0) :
outportb(GC-INDEX. BIT-MASK-INDEX):
outportb(GC-DATA. OxFF):

1

LISTING 35.2 135-2.C
/*
* Sample program t o i l l u s t r a t e E G A I V G A l i n e d r a w i n g r o u t i n e s .

* C o m p i l e d w i t h B o r l a n d C++

* By Michae l Abrash
*I

*

*

inc lude <dos .h> I* c o n t a i n s g e n i n t e r r u p t * /

d e f i n e GRAPHICS-MODE Ox10
i d e f i ne TEXT-MODE 0x03
d e f i n e BIOSpVIDEO-INT Ox10
#de f i ne X-MAX 640 / * w o r k i n g s c r e e n w i d t h * I
d e f i n e Y-MAX 348 /* w o r k i n g s c r e e n h e i g h t * /

e x t e r n v o i d E V G A L i n e () :

/ *
S u b r o u t i n e t o d r a w a r e c t a n g l e f u l l o f v e c t o r s , o f t h e s p e c i f i e d

* l e n g t h and c o l o r , a r o u n d t h e s p e c i f i e d r e c t a n g l e c e n t e r .
*I

vo id Vec to rsUp(XCen te r . YCenter . XLength. YLength. Color)
i n t XCenter. YCenter: / * c e n t e r o f r e c t a n g l e t o fill *I
i n t XLength. YLength: I* d i s t a n c e f r o m c e n t e r t o e d g e

i n t C o l o r : I* c o l o r t o d r a w l i n e s i n * I
I

o f r e c t a n g l e *I

i n t WorkingX. WorkingY:

664 Chapter 35

I* L i n e s f r o m c e n t e r
WorkingX = XCenter -
WorkingY = YCenter -

f o r (: WorkingX < (
EVGALine(XCenter.

I* L i n e s f r o m c e n t e r
WorkingX = XCenter +
WorkingY = YCenter -
f o r (: WorkingY < (

EVGALine(XCenter.

I* L i n e s f r o m c e n t e r
WorkingX = XCenter +
WorkingY = YCenter +

t o t o p o f r e c t a n g l e * I
XLength:
YLength:
XCenter + XLength) : WorkingX++)
YCenter. WorkingX, WorkingY. Color) ;

t o r i g h t o f r e c t a n g l e *I
XLength - 1;
Y Length :
YCenter + YLength) : WorkingY++)
YCenter . Work ingX. Work ingY. Color) :

t o b o t t o m o f r e c t a n g l e * I
XLength - 1:
YLength - 1;

f o r (; WorkingX >- (XCenter - XLength 1; WorkingX")
EVGALine(XCenter. YCenter. WorkingX. WorkingY, Color) :

I* L i n e s f r o m c e n t e r t o l e f t o f r e c t a n g l e * I
WorkingX - XCenter - XLength;
WorkingY - YCenter + YLength - 1;
f o r (: WorkingY >- (YCenter - YLength) : Work ingY- - 1

1
EVGALine(XCenter. YCenter. WorkingX. WorkingY. Color) :

I*
* Sample program t o d r a w f o u r r e c t a n g l e s f u l l o f l i n e s .
*/

v o i d m a i n 0
I

char temp:

/ * S e t g r a p h i c s mode *I
-AX = GRAPHICSLMDDE:
geninterrupt(BIOS-VIDEO-1NT):

I* Draw e a c h o f f o u r r e c t a n g l e s f u l l o f v e c t o r s *I
VectorsUp(XLMAX I 4, Y-MAX I 4, X-MAX I 4.

VectorsUp(X-MAX * 3 / 4, YLMAX I 4. X-MAX I 4.

VectorsUp(XLMAX I 4, Y-MAX * 3 I 4. XKMAX / 4.

VectorsUp(X-MAX * 3 I 4. YLMAX * 3 / 4 . X-MAX I 4 .

Y L M A X I 4. 1);

Y-MAX f 4. 2) :

Y-MAX / 4 . 3) ;

Y"AX / 4, 4) :

I* W a i t f o r t h e e n t e r k e y t o be p r e s s e d *I
scanf ("Xc" , &temp) ;

I* R e t u r n b a c k t o t e x t mode * I

geninterrupt(BIOS-VIDE0-INT):
-AX - TEXT-MODE;

1

Looking at EVGALine
The EVGALine function itself performs four operations. EVGALie first sets up the
VGAs hardware so that all pixels drawn will be in the desired color. This is accom-
plished by setting two of the VGA's registers, the Enable Set/Reset register and the

Bresenham Is Fast, and Fast Is Good 665

Set/Reset register. Setting the Enable Set/Reset to the value OFH, as is done in
EVGALine, causes all drawing to produce pixels in the color contained in the Set/
Reset register. Setting the Set/Reset register to the passed color, in conjunction with
the Enable Set/Reset setting of OFH, causes all drawing done by EVGALine and the
functions it calls to generate the passed color. In summary, setting up the Enable
Set/Reset and Set/Reset registers in this way causes the remainder of EVGALine to
draw a line in the specified color.
EVGALine next performs a simple check to cut in half the number of line orienta-
tions that must be handled separately. Figure 35.4 shows the eight possible line
orientations among which a Bresenham’s algorithm implementation must distin-
guish. (In interpreting Figure 35.4, assume that lines radiate outward from the center
of the figure, falling into one of eight octants delineated by the horizontal and verti-
cal axes and the two diagonals.) The need to categorize lines into these octants falls
out of the major/minor axis nature of the algorithm; the orientations are distin-
guished by which coordinate forms the major axis and by whether each of X and Y
increases or decreases from the line start to the line end.

A moment of thought will show, howevel; that four of the line orientations are p redundant. Each of the four orientations for which DeltaY, the Y component of the
line, is less than 0 (that is, for which the line start Y coordinate is greater than the
line end Y coordinate) can be transformed into one of the four orientations for
which the line start Y coordinate is less than the line end Y coordinate simply by
reversing the line start and end coordinates, so that the line is drawn in the other
direction. EVGALine does this by swapping (XO, YO) (the line start coordinates)
with (XI, Y l) (the line end coordinates) whenever YO is greater than YI .

This accomplished, EVGALine must still distinguish among the four remaining line
orientations. Those four orientations form two major categories, orientations for
which the X dimension is the major axis of the line and orientations for which the Y
dimension is the major axis. As shown in Figure 35.4, octants 1 (where X increases
from start to finish) and 2 (where X decreases from start to finish) fall into the latter
category, and differ in only one respect, the direction in which the X coordinate
moves when it changes. Handling of the running error of the line is exactly the same
for both cases, as one would expect given the symmetry of lines differing only in the
sign of DeltaX, the X coordinate of the line. Consequently, for those cases where
DeltaX is less than zero, the direction of X movement is made negative, and the
absolute value of DeltaX is used for error term calculations.
Similarly, octants 0 (where X increases from start to finish) and 3 (where X decreases
from start to finish) differ only in the direction in which the X coordinate moves
when it changes. The difference between line drawing in octants 0 and 3 and line
drawing in octants 1 and 2 is that in octants 0 and 3, since X is the major axis, the X
coordinate changes on every pixel of the line and the Y coordinate changes only

666 Chapter 35

Decreasing Y
\ Octant 5 A Octant 6

D e l t a X < 0
D e l t a Y < 0
I D e l t a Y l > I D e l t a X l I D e l t a Y l > I D e l t a X l

D e l t a X > 0
D e l t a Y < 0 f

Octant 4
D e l t a X < 0
D e l t a Y < 0
I O e l t a X l > I D e l t a Y 1

O e l t a Y < 0
I D e l t a X l > I D e l t a Y I

Decreasing X 4 b increasing X
I D e l t a X l > I D e l t a Y l
D e l t a X < 0
O e l t a Y > 0

Octant 3

D e l t a X < 0
I D e l t a Y J > J D e l t a X J J D e l t a Y 1 > J D e l t a X J

D e l t a X > 0
D e l t a Y > 0

Octant 1
increasing Y

Bresenharn b eight possible line orientations.
Figure 35.4

when the running error of the line dictates. In octants 1 and 2, the Y coordinate
changes on every pixel and the X coordinate changes only when the running error
dictates, since Y is the major axis.
There is one line-drawing function for octants 0 and 3, OctantO, and one line-draw-
ing function for octants 1 and 2, Octantl. A single function with if statements could
certainly be used to handle all four octants, but at a significant performance cost.
There is, on the other hand, very little performance cost to grouping octants 0 and 3
together and octants 1 and 2 together, since the two octants in each pair differ only
in the direction of change of the X coordinate.
EVGALiie determines which line-drawing function to call and with what value for
the direction of change of the X coordinate based on two criteria: whether DeltaX is
negative or not, and whether the absolute value of DeltaX (IDeltaXI) is less than
DeltaY or not, as shown in Figure 35.5. Recall that the value of DeltaY, and hence the
direction of change of the Y coordinate, is guaranteed to be non-negative as a result
of the earlier elimination of four of the line orientations.
After calling the appropriate function to draw the line (more on those functions
shortly), EVGALiie restores the state of the Enable Set/Reset register to its default
of zero. In this state, the Set/Reset register has no effect, so it is not necessary to
restore the state of the Set/Reset register as well. EVGALine also restores the state of

Bresenham is Fast, and Fast is Good 667

Dec

Decreasing Y

Increasing Y Increasing Y

ling X

E VGALine j. decision logic.
Figure 35.5

the Bit Mask register (which, as we will see, is modified by EVGADot, the pixeldrawing
routine actually used to draw each pixel of the lines produced by EVGALine) to its
default of OFFH. While it would be more modular to have EVGADot restore the state
of the Bit Mask register after drawing each pixel, it would also be considerably slower
to do so. The same could be said of having EVGADot set the Enable Set/Reset and
Set/Reset registers for each pixel: While modularity would improve, speed would
suffer markedly.

Drawing Each Line
The Octant0 and Octantl functions draw lines for which IDeltaXl is greater than
DeltaY and lines for which IDeltaXl is less than or equal to DeltaY, respectively. The
parameters to Octant0 and Octantl are the starting point of the line, the length of
the line in each dimension, and XDirection, the amount by which the X coordinate
should be changed when it moves. Direction must be either 1 (to draw toward the
right edge of the screen) or -1 (to draw toward the left edge of the screen), No value
is required for the amount by which the Y coordinate should be changed; since
DeltaY is guaranteed to be positive, the Y coordinate always changes by 1 pixel.
Octant0 draws lines for which IDeltaXl is greater than DeltaY. For such lines, the X
coordinate of each pixel drawn differs from the previous pixel by either 1 or -1,

668 Chapter 35

depending on the value of XDirection. (This makes it possible for Octant0 to draw
lines in both octant 0 and octant 3.) Whenever ErrorTerm becomes non-negative,
indicating that the next Y coordinate is a better approximation of the line being
drawn, the Y coordinate is increased by 1.
Octantl draws lines for which IDeltaXl is less than or equal to DeltaY. For these lines,
the Y coordinate of each pixel drawn is 1 greater than the Y coordinate of the previ-
ous pixel. Whenever ErrorTerm becomes non-negative, indicating that the next X
coordinate is a better approximation of the line being drawn, the X coordinate is
advanced by either 1 or -1, depending on the value of XDirection. (This makes it
possible for Octantl to draw lines in both octant 1 and octant 2.)

Drawing Each Pixel
At the core of Octant0 and Octantl is a pixel-drawing function, EVGADot. EVGADot
draws a pixel at the specified coordinates in whatever color the hardware of the VGA
happens to be set up for. As described earlier, since the entire line drawn by EVGALine
is of the same color, line-drawing performance is improved by setting the VGAs
hardware up once in EVGALine before the line is drawn, and then drawing all the
pixels in the line in the same color via EVGADot.
EVGADot makes certain assumptions about the screen. First, it assumes that the
address of the byte controlling the pixels at the start of a given row on the screen is
80 bytes after the start of the row immediately above it. In other words, this imple-
mentation of EVGADot only works for screens configured to be 80 bytes wide. Since
this is the standard configuration of all of the modes EVGALine is designed to work
in, the assumption of 80 bytes per row should be no problem. If it is a problem, however,
EVGADot could easily be modified to retrieve the BIOS integer variable at address
0040:004A, which contains the number of bytes per row for the current video mode.
Second, EVGADot assumes that screen memory is organized as a linear bitmap start-
ing at address A000:0000, with the pixel at the upper left of the screen controlled by
bit 7 of the byte at offset 0, the next pixel to the right controlled by bit 6, the ninth
pixel controlled by bit 7 of the byte at offset 1, and so on. Further, it assumes that the
graphics adapter’s hardware is configured such that setting the Bit Mask register to
allow modification of only the bit controlling the pixel of interest and then ORing a
value of OFEH with display memory will draw that pixel correctly without affecting
any other dots. (Note that OFEH is used rather than OFFH or 0 because some opti-
mizing compilers turn ORs with the latter values into simpler operations or optimize
them away entirely. As explained later, however, it’s not the value that’s ORed that
matters, given the way we’ve set up the VGAs hardware; it’s the act of ORing itself,
and the value OFEH forces the compiler to perform the OR operation.) Again, this is
the normal way in which modes OEH, OFH, 10H, and 12H operate. As described
earlier, EVGADot also assumes that the VGA is set up so that each pixel drawn in the
above-mentioned manner will be drawn in the correct color.

Bresenham Is Fast, and Fast Is Good 669

Given those assumptions, EVGADot becomes a surprisingly simple function. First,
EVGADot builds a far pointer that points to the byte of display memory controlling
the pixel to be drawn. Second, a mask is generated consisting of zeros for all bits
except the bit controlling the pixel to be drawn. Third, the Bit Mask register is set to
that mask, so that when display memory is read and then written, all bits except the
one that controls the pixel to be drawn will be left unmodified.
Finally, OFEH is ORed with the display memory byte controlling the pixel to be drawn.
ORing with OFEH first reads display memory, thereby loading the VGA's internal
latches with the contents of the display memory byte controlling the pixel to be drawn,
and then writes to display memory with the value OFEH. Because of the unusual way
in which the VGA's data paths work and the way in which EVGALine sets up the
VGA's Enable Set/Reset and Set/Reset registers, the value that is written by the OR
instruction is ignored. Instead, the value that actually gets placed in display memory
is the color that was passed to EVGALine and placed in the Set/Reset register. The Bit
Mask register, which was set up in step three above, allows only the single bit control-
ling the pixel to be drawn to be set to this color value. For more on the various
machineries the VGA brings to bear on graphics data, look back to Chapter 25.
The result of all this is simply a single pixel drawn in the color set up in EVGALine.
EVGADot may seem excessively complex for a function that does nothing more that
draw one pixel, but programming the VGA isn't trivial (as we've seen in the early
chapters of this part). Besides, while the explanation of EVGADot is lengthy, the
code itself is only five lines long.
Line drawing would be somewhat faster if the code of EVGADot were made an inline
part of Octant0 and Octantl, thereby saving the overhead of preparing parameters
and calling the function. Feel free to do this if you wish; I maintained EVGADot as a
separate function for clarity and for ease of inserting a pixel-drawing function for a
different graphics adapter, should that be desired. If you do install a pixel-drawing
function for a different adapter, or a fundamentally different mode such as a 256-
color SuperVGA mode, remember to remove the hardware-dependent outportb lines
in EVGALine itself.

Comments on the C Implementation
EVGALine does no error checking whatsoever. My assumption in writing EVGALine
was that it would be ultimately used as the lowest-level primitive of a graphics soft-
ware package, with operations such as error checking and clipping performed at a
higher level. Similarly, EVGALine is tied to the VGA's screen coordinate system of
(0,O) to (639,199) (in mode OEH), (0,O) to (639,349) (in modes OFH and lOH), or
(0,O) to (639,479) (in mode 12H), with the upper left corner considered to be (0,O).
Again, transformation from any coordinate system to the coordinate system used by
EVGALine can be performed at a higher level. EVGALine is specifically designed to

670 Chapter 35

do one thing: draw lines into the display memory of the VGA. Additional functional-
ity can be supplied by the code that calls EVGALine.
The version of EVGAlLine shown in Listing 35.1 is reasonably fast, but it is not as fast
as it might be. Inclusion of EVGADot directly into Octant0 and Octantl, and, indeed,
inclusion of Octant0 and Octantl directly into EVGALine would speed execution by
saving the overhead of calling and parameter passing. Handpicked register variables
might speed performance as well, as would the use of word OUTs rather than byte
OUTs. A more significant performance increase would come from eliminating sepa-
rate calculation of the address and mask for each pixel. Since the location of each
pixel relative to the previous pixel is known, the address and mask could simply be
adjusted from one pixel to the next, rather than recalculated from scratch.
These enhancements are not incorporated into the code in Listing 35.1 for a couple
of reasons. One reason is that it’s important that the workings of the algorithm be
clearly visible in the code, for learning purposes. Once the implementation is under-
stood, rewriting it for improved performance would certainly be a worthwhile exercise.
Another reason is that when flat-out speed is needed, assembly language is the best
way to go. Why produce hard-to-understand C code to boost speed a bit when assem-
bly-language code can perform the same task at two or more times the speed?
Given which, a high-speed assembly language version of EVGALine would seem to
be a logical next step.

Bresenham’s Algorithm in Assembly
Listing 35.3 is a high-performance implementation of Bresenham’s algorithm, writ-
ten entirely in assembly language. The code is callable from C just as is Listing 35.1,
with the same name, EVGALine, and with the same parameters. Either of the two
can be linked to any program that calls EVGALine, since they appear to be identical
to the calling program. The only difference between the two versions is that the
sample program in Listing 35.2 runs over three times as fast on a 486 with an ISA-bus
VGA when calling the assembly-language version of EVGALine as when calling the C
version, and the difference would be considerably greater yet on a local bus, or with
the use of write mode 3. Link each version with Listing 35.2 and compare perfor-
mance-the difference is startling.

LISTING 35.3 135-3.ASM
Fas t assemb le r imp lemen ta t i on o f B r e s e n h a m ‘ s l i n e - d r a w i n g a l g o r i t h m
f o r t h e EGA and VGA. Works i n modes OEh. OFh. 10h. and 12h.
B o r l a n d C++ n e a r - c a l l a b l e .
Bit mask a c c u m u l a t i o n t e c h n i q u e when (D e l t a X (>= (D e l t a Y l

suggested by Jim Mackraz.

Assembled w i t h TASM

By Michae l Abrash

Bresenham Is Fast, and Fast Is Good 671

.
: C - c o m p a t i b l e l i n e - d r a w i n g e n t r y p o i n t a t -EVGALine.
: N e a r C - c a l l a b l e a s :

EVGALine(X0. Y O , X 1 . Y 1 . C o l o r) ; *
.

*

model smal l
.code

: Equates.

EVGA-SCREEN-WIDTH-IN-BYTES equ

EVGA-SCREEN-SEGMENT
GC-INDEX

SET-RESET-INDEX
ENABLE-SET-RESET-INDEX
BIT-MASK-INDEX

: Stack f rame.

EVGALineParms s t r u c
dw
dw

x0 dw
Y O dw
x1 dw
Y 1 dw
Co lor db

db
EVGALineParms ends

80 ;memory o f f s e t f r o m s t a r t o f
; one row t o s t a r t o f n e x t
: i n d i s p l a y memory

OaOOOh : d i s p l a y memory segment
3 c e h ; G r a p h i c s C o n t r o l l e r

0
1
8

: I n d e x r e g i s t e r p o r t
: i ndexes o f needed
; G r a p h i c s C o n t r o l 1 e r
: r e g i s t e r s

;pushed BP
: pushed re tu rn add ress (make doub le
: w o r d f o r f a r c a l l)
: s t a r t i n g X c o o r d i n a t e o f l i n e
; s t a r t i n g Y c o o r d i n a t e o f l i n e
;end ing X c o o r d i n a t e o f l i n e
;end ing Y c o o r d i n a t e o f l i n e
; c o l o r o f l i n e
;dummy t o pad t o w o r d s i z e

.
; L ine d raw ing macros . *
.

: Macro t o l o o p t h r o u g h l e n g t h o f l i n e , d r a w i n g e a c h p i x e l i n t u r n .
; Used f o r c a s e o f (D e l t a X I >- (D e l t a Y l .
: I n p u t :

MOVE-LEFT: 1 i f De l taX < 0, 0 e l s e
AL: p i x e l mask f o r i n i t i a l p i x e l
BX: (D e l t a X I
D X : a d d r e s s o f GC d a t a r e g i s t e r . w i t h i n d e x r e g i s t e r s e t t o

SI: De l taY
i n d e x o f B i t Mask r e g i s t e r

E S : D I :

LINE1 macro
1 o c a l
1 o c a l
mov

d i s p l a y memory address o f b y t e c o n t a i n i n g i n i t i a l
p i x e l

MOVE-LEFT
L ineLoop. MoveXCoord, NextPixe l , L i n e l E n d
MoveToNextByte. ResetBi tMaskAccumulator
cx. bx :# o f p i x e l s i n l i n e

672 Chapter 35

j c x z L i n e l E n d ; d o n e i f t h e r e a r e n o m o r e p i x e l s
: (t h e r e ' s a l w a y s a t l e a s t t h e one p i x e l
: a t t h e s t a r t l o c a t i o n)

s h l s i . l ;Del taY * 2
mov b p . s i : e r r o r t e r m
sub bp.bx : e r r o r t e r m s t a r t s a t Oel taY * 2 - Oel taX
s h l b x . 1 :Del taX * 2
sub s i .bx :Del taY * 2 - De l taX * 2 (u s e d i n l o o p)
add bx .s i ;Oel taY * 2 (u s e d i n l o o p)
mov ah .a l ; s e t a s i d e p i x e l mask f o r i n i t i a l p i x e l

: w i t h AL (t h e p i x e l mask accumu la to r) s e t
: f o r t h e i n i t i a l p i x e l

L ineLoop:

: See i f i t ' s t i m e t o advance the Y c o o r d i n a t e y e t .

and bp.bp :see i f e r r o r t e r m i s n e g a t i v e
j s MoveXCoord ;yes, s t a y a t t h e same Y c o o r d i n a t e

: Advance the Y c o o r d i n a t e , f i r s t w r i t i n g all p i x e l s i n t h e c u r r e n t
: b y t e . t h e n move t h e p i x e l mask e i t h e r l e f t o r r i g h t , d e p e n d i n g
: on MOVE-LEFT.

o u t d x . a l ; s e t u p b i t mask f o r p i x e l s i n t h i s b y t e
x c h g b y t e p t r [d i l .a1

: l o a d l a t c h e s a n d w r i t e p i x e l s , w i t h b i t mask
: p r e s e r v i n g o t h e r l a t c h e d b i t s . B e c a u s e
; s e t / r e s e t i s e n a b l e d f o r all p l a n e s , t h e
: v a l u e w r i t t e n a c t u a l l y d o e s n ' t m a t t e r

add di.EVGALSCREEN-WIOTH_IN-BYTES ; i nc remen t Y c o o r d i n a t e
a d d b p . s i : a d j u s t e r r o r t e r m b a c k down

: Move p i x e l mask one p i x e l (e i t h e r r i g h t o r l e f t , d e p e n d i n g
: on MOVELLEFT). a d j u s t i n g d i s p l a y memory address when p i x e l mask wraps.

i f MOVE-LEFT

e l s e

end i f

r o l a h . 1 :move p i x e l mask 1 p i x e l t o t h e l e f t

r o r a h . 1 :move p i x e l mask 1 p i x e l t o t h e r i g h t

j n c R e s e t B i t M a s k A c c u m u l a t o r : d i d n ' t w r a p t o n e x t b y t e
j m p s h o r t M o v e T o N e x t B y t e ; d i d w r a p t o n e x t b y t e

; Move p i x e l mask one p i x e l (e i t h e r r i g h t o r l e f t , d e p e n d i n g
: on MOVE-LEFT), a d j u s t i n g d i s p l a y memory a d d r e s s a n d w r i t i n g p i x e l s
: i n t h i s b y t e when p i x e l mask wraps.

MoveXCoord:

i f MOVELLEFT

e l s e

end i f

add bp.bx

r o l a h . 1 ;move p i x e l mask 1 p i x e l t o t h e l e f t

r o r a h . 1 ;move p i x e l mask 1 p i x e l t o t h e r i g h t

j n c N e x t P i x e l : i f s t i l l i n same b y t e , no need t o

o u t d x . a l ; s e t u p b i t mask f o r p i x e l s i n t h i s b y t e .
x c h g b y t e p t r C d i 1 , a l

; i n c r e m e n t e r r o r t e r m & keep same

: m o d i f y d i s p l a y memory y e t

Bresenham Is Fast, and Fast Is Good 673

; l o a d l a t c h e s a n d w r i t e p i x e l s , w i t h b i t mask
; p r e s e r v i n g o t h e r l a t c h e d b i t s . B e c a u s e
: s e t l r e s e t i s e n a b l e d f o r a l l p l a n e s , t h e
; v a l u e w r i t t e n a c t u a l l y d o e s n ' t m a t t e r

MoveToNextByte:
i f MOVE-LEFT

e l s e

e n d i f
ResetBi tMaskAccumulator :

N e x t P i x e l :

dec d i ; n e x t p i x e l i s i n b y t e t o l e f t

i n c d i ; n e x t p i x e l i s i n b y t e t o r i g h t

sub a1 .a1

o r a1 , a h : a d d t h e n e x t p i x e l t o t h e p i x e l mask

1 oop LineLoop

; r e s e t p i x e l mask accumulator

; a c c u m u l a t o r

: W r i t e t h e p i x e l s i n t h e f i n a l b y t e .

L i n e l E n d :
o u t d x . a l ; s e t u p b i t mask f o r p i x e l s i n t h i s b y t e
x c h g b y t e p t r [d i] . a l

; l o a d l a t c h e s a n d w r i t e p i x e l s , w i t h b i t mask
; p r e s e r v i n g o t h e r l a t c h e d b i t s . B e c a u s e
; s e t l r e s e t i s e n a b l e d f o r a l l p l a n e s , t h e
: v a l u e w r i t t e n a c t u a l l y d o e s n ' t m a t t e r

endm

; Macro t o l o o p t h r o u g h l e n g t h o f l i n e , d r a w i n g e a c h p i x e l i n t u r n .
: Used f o r c a s e o f D e l t a X < D e l t a Y .
; I n p u t :

MOVE-LEFT: 1 i f De l taX < 0. 0 e l s e
AL: p i x e l mask f o r i n i t i a l p i x e l
EX: I D e l t a x I
D X : a d d r e s s o f GC d a t a r e g i s t e r . w i t h i n d e x r e g i s t e r s e t t o

S I : Del taY
ES:DI: d i s p l a y memory a d d r e s s o f b y t e c o n t a i n i n g i n i t i a l

i n d e x o f B i t Mask r e g i s t e r

p i x e l

LINE2 macro MOVE-LEFT
l o c a l L i n e L o o p . MoveYCoord. ETermAction. LineEEnd
mov c x , s i ;# o f p i x e l s i n l i n e
j c x z LineEEnd :done i f t h e r e a r e n o m o r e p i x e l s
s h l b x . 1
mov bp.bx
s u b b p . s i
s h l s i , I
s u b b x . s i
add s i . b x

;De l taX * 2
; e r r o r t e r m
: e r r o r t e r m s t a r t s a t D e l t a X *
;De l taY * 2
:De l taX * 2 - De l taY * 2 (used
;De l taX * 2 (used i n l o o p)

: S e t u p i n i t i a l b i t mask & w r i t e i n i t i a l p i x e l .

o u t d x , a l
x c h g b y t e p t r [d i] . a h

: l o a d l a t c h e s a n d w r i t e p i x e l ,

2 - De l taY

i n l o o p)

w i t h b i t mask
: p r e s e r v i n g o t h e r l a t c h e d b i t s . B e c a u s e
: s e t / r e s e t i s e n a b l e d f o r a l l p l a n e s , t h e
: v a l u e w r i t t e n a c t u a l l y d o e s n ' t m a t t e r

674 Chapter 35

LineLoop:

: See i f i t ' s t i m e t o advance the X c o o r d i n a t e y e t .

and bp.bp ; s e e i f e r r o r t e r m i s n e g a t i v e
j ns ETermAc t ion ;no. advance X c o o r d i n a t e
a d d b p . s i : i n c r e m e n t e r r o r t e r m & keep same
j m p s h o r t MoveYCoord ; X c o o r d i n a t e

ETermAct ion:

: Move p i x e l mask o n e p i x e l (e i t h e r r i g h t o r l e f t , d e p e n d i n g
: on MOVE-LEFT). a d j u s t i n g d i s p l a y memory address when p i x e l mask wraps.

i f MOVELLEFT
r o l a1 .1
s b b d i . 0

r o r a1 .1
a d c d i . 0

o u t d x . a l
add bp.bx

e l s e

e n d i f

: Advance Y c o o r d i n a t e .

MoveYCoord:
add di.EVGALSCREENLWIDTHLINLBYTES

; W r i t e t h e n e x t p i x e l .

x c h g b y t e p t r [d i l . a h

; s e t new b i t mask
; a d j u s t e r r o r t e r m b a c k down

: l o a d l a t c h e s a n d w r i t e p i x e l , w i t h b i t mask
: p r e s e r v i n g o t h e r l a t c h e d b i t s . B e c a u s e
: s e t / r e s e t i s e n a b l e d f o r a l l p l a n e s , t h e
: v a l u e w r i t t e n a c t u a l l y d o e s n ' t m a t t e r

1 oop L i neLoop

endm
L i ne2End:

.
; L i n e d r a w i n g r o u t i n e . *
.

pub1 i c -EVGALi ne
-EVGALi ne p r o c n e a r

push bp
mov bp .sp
push s i
push d i
push ds

; P o i n t D S t o d i s p l a y memory.

; p r e s e r v e r e g i s t e r v a r i a b l e s

mov ax, EVGA
mov ds ,ax

; Se t t he Se t /Rese t and
; t h e s e l e c t e d c o l o r .

SCREENLSEGMENT

S e t / R e s e t E n a b l e r e g i s t e r s f o r

Bresenham Is Fast, and Fast Is Good 675

mov
mov
o u t
i nc
mov
o u t
dec
mov
o u t
i nc
mov
o u t

: Get De l taY

mov
mov

sub
j n s

dx.GC-INDEX
a1 .SET-RESET-I
d x , a l
dx
a1 . [bp+Color l
d x . a l
dx
a1 .ENAELE-SET-
d x , a l
dx
a1 , O f f h
d x . a l

s i , [bp+Y11
ax, [bp+YD]

s i , a x

NDEX

RESET-INDEX

; l i n e Y s t a r t
; l i n e Y end, used l a t e r i n
; c a l c u l a t i n g t h e s t a r t a d d r e s s
; c a l c u l a t e D e l t a Y

C a l c S t a r t A d d r e s s ; i f p o s i t i v e , w e ' r e s e t

: Del taY i s n e g a t i v e - - swap c o o r d i n a t e s so w e ' r e a l w a y s w o r k i n g
: w i t h a p o s i t i v e D e l t a Y .

mov ax, [bp+Y11 ;set l i n e s t a r t t o Y 1 . f o r u s e

mov dx, [bp+XO]
xchg dx. [bp+X11
mov [bp+XO] .dx ;swap X c o o r d i n a t e s
n e g s i : c o n v e r t t o p o s i t i v e D e l t a Y

: i n c a l c u l a t i n g t h e s t a r t a d d r e s s

: C a l c u l a t e t h e s t a r t i n g a d d r e s s i n d i s p l a y memory o f t h e l i n e .
: H a r d w i r e d f o r a s c r e e n w i d t h o f 80 b y t e s .

C a l c S t a r t A d d r e s s :
s h l a x . 1 : Y O * 2 ; Y O i s a l r e a d y i n AX
sh l ax .1 : Y O * 4
s h l a x . 1 : Y O * 8
sh l ax .1 : Y O * 1 6
mov d i .ax
sh l ax .1 : Y O * 32
s h l a x . 1 : Y O * 64
add d i ,ax : Y O * 80
mov dx , [bp+XOI
mov c l , d l : s e t a s i d e l o w e r 3 b i t s o f c o l u m n f o r
and c1.7 : p i x e l m a s k i n g
s h r d x . 1
s h r d x . 1
s h r d x . 1 : g e t b y t e a d d r e s s o f c o l u m n (X 0 / 8)
add d i , d x ; o f f s e t o f l i n e s t a r t i n d i sp lay segmen t

: Set up GC I n d e x r e g i s t e r t o p o i n t t o t h e B i t Mask r e g i s t e r .

mov dx,GC-INDEX
mov al.EIT-MASK-INDEX
o u t d x . a l
i n c d x ; l e a v e DX p o i n t i n g t o t h e GC D a t a r e g i s t e r

; S e t u p p i x e l mask (i n - b y t e p i x e l a d d r e s s) .

676 Chapter 35

mov a l . 8 0 h
s h r a1 . c l

: C a l c u l a t e D e l t a X .

mov bx. [bp+Xl]
sub bx.[bp+XOI

: H a n d l e c o r r e c t o n e o f f o u r o c t a n t s

j s NegDel t a x
cmp b x . s i
j b O c t a n t l

: De l taX >- Del taY >- 0 .

L I N E l 0
jmp EVGALi neDone

: Del taY > De l taX >- 0.

O c t a n t l :
LINE2 0
j m p s h o r t EVGALineDone

NegDel t a x :
neg bx : I D e l t a x I
cmp b x . s i
j b O c t a n t 2

: I D e l t a X l >- Del taY and Del taX < 0.

L I N E l 1
j m p s h o r t EVGALineDone

: I D e l t a X l < Del taY and Del taX < 0.

Octan t2 :
LINE2 1

EVGALi neDone:

: R e s t o r e EVGA s t a t e .

mov
o u t
dec
mov
o u t
i n c
sub
o u t

POP
POP
POP
POP
r e t

- EVGALi ne

end

a1 . O f f h
d x . a l : s e t B i t Mask r e g i s t e r t o O f f h
d x
al.ENABLE-SET-RESET-INDEX
d x . a l
d x
a1 .a1
d x . a l : s e t E n a b l e S e t / R e s e t r e g i s t e r t o 0

ds
d i
s i
bP

endp

Bresenharn Is Fast, and Fast Is Good 677

An explanation of the workings of the code in Listing 35.3 would be a lengthy one,
and would be redundant since the basic operation of the code in Listing 35.3 is no
different from that of the code in Listing 35.1, although the implementation is much
changed due to the nature of assembly language and also due to designing for speed
rather than for clarity. Given that you thoroughly understand the C implementation
in Listing 35.1, the assembly language implementation in Listing 35.3, which is
well-commented, should speak for itself.
One point I do want to make is that Listing 35.3 incorporates a clever notion for
which credit is due Jim Mackraz, who described the notion in a letter written in
response to an article I wrote long ago in the late and lamented Programmer’s Jour-
nul. Jim’s suggestion was that when drawing lines for which IDeltaXl is greater than
IDeltaYI, bits set to 1 for each of the pixels controlled by a given byte can be accu-
mulated in a register, rather than drawing each pixel individually. All the pixels
controlled by that byte can then be drawn at once, with a single access to display
memory, when all pixel processing associated with that byte has been completed.
This approach can save many OUTS and many display memory reads and writes
when drawing nearly-horizontal lines, and that’s important because EGAs and VGAs
hold the CPU up for a considerable period of time on each 1/0 operation and
display memory access.
All too many PC programmers fall into the high-level-language trap of thinking that
a good algorithm guarantees good performance. Not so: As our two implementa-
tions of Bresenham’s algorithm graphically illustrate (pun not originally intended,
but allowed to stand once recognized), truly great PC code requires both a good
algorithm and a good assembly implementation. In Listing 35.3, we’ve got both-
and my-oh-my, isn’t it fun?

678 Chapter 35

	previous:
	home:
	next:

