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For all the complexity~,of graphics design and  programming, surprisingly few primi- 
tive functions lie at the.&  &&most graphics software. Heavily used primitives include 
routines  that draw dati cles, area fills, bit block logical transfers, and, of course, 
lines. For many  ye&, computer  graphics were created primarily with specialized 
line-drawing hardware, so lines are in  a way the Zinguafranca of computer graphics. 
Lines are jii de variety of microcomputer  graphics  applications today, nota- 

Probably the best-khown formula  for drawing lines on a computer display is called 
Bresenham’s line-drawing algorithm. (We  have to be specific here because there is 
also a less-well-known Bresenham’s circle-drawing algorithm.)  In this chapter, 1’11 
present two implementations  for  the EGA and VGA of Bresenham’s line-drawing 
algorithm, which provides decent  line quality and excellent drawing speed. 
The first implementation is in rather plain C, with the  second  in not-so-plain assem- 
bly, and they’re  both  pretty  good  code. The assembly implementation is damned 
good  code,  in  fact,  but  ifyou want  to  know whether it’s the fastest Bresenham’s imple- 
mentation possible, I must tell  you that it isn’t. First  of all, the  code  could  be  sped up 
a bit by shuffling and  combining  the various error-term  manipulations, but  that re- 
sults in truly cryptic code. I wanted  you to be  able to relate  the  original  algorithm  to 
the final code, so I skipped  those optimizations. Also, write mode 3, which is unique 
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to the VGA, could be used for considerably faster drawing. I’ve described write mode 
3 in  earlier  chapters, and I strongly recommend its use in VGA-only line drawing. 
Second, horizontal, vertical, and diagonal lines could be special-cased, since those 
particular lines require little calculation and can be drawn very  rapidly. (This is espe- 
cially true of horizontal lines, which can be drawn 8 pixels at a time.) 
Third, run-length slice line drawing could be used to  significantly reduce  the  num- 
ber of calculations required  per pixel, as  I’ll demonstrate in the  next two chapters. 
Finally, unrolled loops and/or duplicated code could  be  used  to  eliminate  most of the 
branches in the final assembly implementation, and because x86  processors are notori- 
ously  slow at branching, that would  make quite a difference in overall performance. If 
you’re interested in unrolled loops and similar  assembly techniques, I refer you to the 
first part of  this  book. 
That brings us neatly to my final point: Even  if I didn’t know that there were further 
optimizations to be made to my line-drawing implementation,  I’d assume that there 
were. As I’m  sure  the  experienced assembly programmers  among you  know, there 
are  dozens of  ways to tackle any problem in assembly, and  someone else always seems 
to have come up with a trick that never occurred  to you. I’ve incorporated a sugges- 
tion made by Jim Mackraz in the  code  in this chapter, and  I’d be most  interested  in 
hearing of  any other tricks or tips  you  may  have. 
Notwithstanding, the  linedrawing implementation in Listing 35.3 is plentyfast enough 
for most purposes, so let’s get  the discussion  underway. 

The Task at Hand 
There  are two important characteristics of  any linedrawing function. First, it  must 
draw a reasonable approximation of a  line. A computer screen has limited resolu- 
tion, and so a line-drawing function  must actually approximate  a straight line by 
drawing a series of pixels in  what amounts  to a  jagged  pattern  that generally pro- 
ceeds in the desired direction. That  pattern of pixels must reliably  suggest to  the 
human eye the  true  line it represents. Second, to be usable, a line-drawing function 
must befast. Minicomputers and mainframes generally have hardware that  performs 
line drawing, but most microcomputers offer no such assistance. True, nowadays 
graphics accelerators such as the S3 and AT1 chips have line drawing hardware, but 
some other accelerators don’t;  when drawing lines on  the latter  sort of chip,  when 
drawing on  the CGA,  EGA, and VGA, and when drawing sorts of lines not  supported 
by line-drawing hardware as  well, the PC’s CPU must draw lines on its own, and, as 
many users of graphics-oriented software know, that can be a slow process indeed. 
Line drawing quality and  speed derive from two factors: The algorithm used to draw 
the line and  the  implementation of that  algorithm. The first implementation (writ- 
ten  in Borland C++)  that I’ll be presenting in this chapter illustrates the workings of 
the algorithm and draws lines at a  good  rate.  The second implementation, written in 
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assembly language and callable directly from Borland C++, draws lines at extremely 
high speed, on the order of three to six times faster than  the C version. Between 
them,  the two implementations illuminate Bresenham’s line-drawing algorithm and 
provide high-performance line-drawing capability. 
The difficulty in drawing a line lies in generating  a set of  pixels that, taken together, 
are a reasonable facsimile  of a  true  line. Only horizontal, vertical, and 1:l diagonal 
lines can be drawn precisely along  the  true line being represented; all other lines 
must be approximated  from  the array of pixels that a given video mode supports, as 
shown in Figure 35.1. 
Considerable thought has gone  into  the design of line-drawing algorithms, and a 
number of techniques  for drawing high-quality lines have been developed. Unfortu- 
nately, most of these techniques were developed for powerful, expensive graphics 
workstations and  require very high resolution, a large color palette, and/or floating- 
point hardware. These  techniques tend to perform poorly and  produce less  visually 
impressive results on all but  the best-endowed PCs. 
Bresenham’s  line-drawing algorithm, on the other  hand, is uniquely suited to micro- 
computer implementation in that it requires no floating-point operations, no divides, 
and  no multiplies inside the line-drawing loop. Moreover, it can be implemented 
with surprisingly little code. 

Bresenham’s Line-Drawing  Algorithm 
The key to grasping Bresenham’s algorithm is to understand  that when drawing an 
approximation of a line on a finite-resolution display, each pixel drawn will lie either 
exactly on the true line or to one side or  the  other of the  true  line.  The  amount by 
which the pixel actually  drawn  deviates from  the  true line is the mor of the line 
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Approximating a true line from a pixel array. 
Figure 35.1 
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drawing at that  point. As the drawing of the  line progresses from one pixel to the 
next,  the error can be used to  tell when, given the  resolution of the display, a  more 
accurate  approximation of the  line  can be drawn by placing  a given pixel one  unit of 
screen  resolution away from its predecessor in either  the  horizontal  or  the vertical 
direction, or  both. 
Let’s examine  the case of drawing a  line  where  the  horizontal, or X length of the  line 
is greater  than  the vertical, or Y length,  and  both lengths  are  greater  than 0. For 
example,  suppose we are drawing a  line  from (0,O) to (5,2), as  shown in Figure 35.2. 
Note that Figure 35.2  shows the  upper-left-hand  corner of the  screen as (O,O), rather 
than  placing (0,O) at its more traditional lower-left-hand corner  location.  Due  to  the 
way in which the PC’s graphics  are mapped to  memory, it is simpler  to work within 
this framework, although  a  translation of Y from  increasing downward to  increasing 
upward  could be effected easily enough by simply subtracting  the Y coordinate  from 
the  screen  height  minus 1; if you are  more  comfortable with the  traditional  coordi- 
nate system, feel  free  to modify the code in Listings  35.1 and 35.3. 
In Figure 35.2, the  endpoints of the  line fall  exactly on displayed  pixels.  However, no 
other  part of the  line squarely intersects  the  center of a pixel, meaning  that all other 
pixels will have to be plotted as approximations of the  line.  The  approach to  ap- 
proximation  that Bresenham’s algorithm takes is to move  exactly 1 pixel along  the 
major dimension of the  line  each time a new pixel is drawn, while  moving 1 pixel 
along  the  minor  dimension  each time the  line moves more  than halfway between 
pixels along  the  minor  dimension. 
In Figure 35.2, the X dimension is the major dimension.  This  means  that 6 dots, one 
at each of X coordinates 0,1,2,3,4,  and 5, will be drawn. The trick, then, is to decide 
on the  correct Y coordinates  to  accompany  those X coordinates. 

I 0 1 2 3 4 5 6 

3 0 0 0 0 0 0 0  

Drawing between two pixel endpoints. 
Figure 35.2 
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It’s easy enough to select the Y coordinates by  eye in Figure 35.2. The  appropriate Y 
coordinates  are 0,  0, 1, 1, 2, 2, based on  the Y coordinate closest to the  line  for  each 
X coordinate.  Bresenham’s  algorithm makes the same selections, based on  the same 
criterion.  The  manner in  which it does this is  by keeping  a  running  record of the 
error of the line-that is, how far  from  the  true  line  the  current Y coordinate is-at 
each X coordinate, as shown in Figure 35.3. When the  running  error of the line 
indicates  that the  current Y coordinate deviates from the  true  line to the  extent  that 
the adjacent Y coordinate would be closer to the line, then  the  current Y coordinate 
is changed to that  adjacent Y coordinate. 
Let’s take a moment to follow the steps Bresenham’s algorithm would go through in 
drawing the line  in Figure 35.3. The initial pixel is drawn at (O,O), the starting  point 
of the line. At this point  the  error of the line is 0. 
Since X is the  major  dimension, the  next pixel has an X coordinate of 1. The Y 
coordinate of this pixel will  be whichever of 0 (the last Y coordinate)  or 1 (the adja- 
cent  Ycoordinate in the  direction of the  end  point of the  line)  the  true line at this X 
coordinate is closer to. The  running  error  at this point is B minus A, as shown in 
Figure 35.3. This amount is less than 1/2 (that is, less than halfway to the  next Y 
coordinate), so the Y coordinate  does  not  change  at X equal to 1. Consequently, the 
second pixel is drawn at ( 1  ,0). 
The  third pixel has  an X coordinate of 2. The  running  error  at this point is C minus 
A, which is greater than 1/2 and  therefore closer to the  next  than  to  the  current Y 
coordinate.  The  third pixel is drawn at (2,1), and 1 is subtracted  from  the  running 
error to compensate  for  the  adjustment of one pixel in the  current Y coordinate. 
The  running  error of the pixel actually drawn at this point is C minus D. 

0 1 2 3 4 5 6 
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The  error  term in Bresenham k algorithm. 
Figure 35.3 
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The  fourth pixel has an X coordinate of 3. The  running  error  at this point is E minus 
D; since this is  less than  1/2,  the  current Y coordinate  doesn’t  change.  The  fourth 
pixel is drawn at (3 , l ) .  
The fifth pixel has an X coordinate of 4. The  running  error  at this point is F minus 
D; since this is greater  than  1/2,  the  current Y coordinate advances. The  third pixel 
is drawn at (4,Z) , and 1 is subtracted  from  the  running  error.  The  error of the pixel 
drawn at this point is G minus F. 
Finally, the sixth pixel is the  end  point of the  line.  This pixel has an X coordinate of 
5. The  running  error  at this point is G minus G, or 0, indicating  that this point is 
squarely on  the  true line, as  of course  it  should be given that it’s the  end  point, so the 
current Y coordinate  remains  the  same.  The  end  point of the  line is drawn at  (5,2), 
and  the  line is complete. 
That’s really  all there is  to Bresenham’s algorithm.  The  algorithm is a process of 
drawing a pixel  at  each possible coordinate  along  the  major  dimension of the line, 
each with the closest possible coordinate  along  the  minor  dimension.  The  running 
error is used to  keep track of when the  coordinate  along  the  minor  dimension  must 
change in order to  remain as close as possible to the  true  line.  The above description 
of the case where X is the  major  dimension, Y is the  minor  dimension,  and  both 
dimensions  are  greater  than  zero is readily generalized  to all eight  octants in  which 
lines  could  be  drawn, as we  will see in  the C implementation. 
The above discussion summarizes  the nature  rather  than  the exact  mechanism of 
Bresenham’s linedrawing  algorithm. I’ll provide a brief seat-of-the-pants discussion 
of the  algorithm  in  action when we get  to  the C implementation of the  algorithm; 
for a full mathematical  treatment,  I  refer you to pages 433-436 of Foley and Van 
Dam’s Fundamentals ofInteractive Computer  Graphics (Addison-Wesley, 1982) , or pages 
72-78 of the  second  edition of that  book, which was published  under  the  name 
Computer  Graphics:  Principles and Practice (Addison-Wesley, 1990).  These sources  pro- 
vide the derivation of the integer-only, divide-free version of the  algorithm, as  well  as 
Pascal code  for  drawing lines in one of the  eight possible octants. 

Strengths  and  Weaknesses 
The overwhelming strength of Bresenham’s  line-drawing  algorithm is speed. With 
no divides, no  floating-point  operations,  and no  need  for variables that won’t fit in 
16 bits, it is perfectly  suited  for PCs. 
The weakness of Bresenham’s  algorithm is that  it  produces relatively  low-quality lines 
by comparison with most other line-drawing  algorithms.  In particular, lines  gener- 
ated with Bresenham’s  algorithm can tend  to look a little jagged.  On  the PC, however, 
jagged lines are  an inevitable  consequence of  relatively  low resolution  and  a small 
color  set, so lines drawn with Bresenham’s  algorithm  don’t look all that  much differ- 
ent from  lines drawn in  other ways. Besides,  in most applications, users are far  more 
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interested in the overall picture  than in the primitive elements  from which that pic- 
ture is built. As a  general  rule, any collection of  pixels that  trend  from  point A to 
point B in  a straight fashion is accepted by the eye  as a line. Bresenham’s algorithm 
is successfully used by many current PC programs, and by the standard of this wide 
acceptance the algorithm is certainly good  enough. 
Then,  too, users hate waiting for their computer to finish drawing. By any standard 
of drawing performance, Bresenham’s algorithm excels. 

An Implementation in C 
It’s  time  to get down and look at some actual working code. Listing 35.1 is a C imple- 
mentation of Bresenham’s line-drawing algorithm for  modes OEH, OFH, IOH, and 
12H of the VGA, called as function EVGALiie. Listing 35.2 is a sample program to 
demonstrate  the use of EVGALine. 

LISTING 35.1 135- 1 .C 
/ *  
* C i m p l e m e n t a t i o n   o f   B r e s e n h a m ’ s   l i n e   d r a w i n g   a l g o r i t h m  
* f o r   t h e  EGA and VGA.  Works i n  modes OxE. OxF. 0x10.  and  0x12. 

* C o m p i l e d   w i t h   B o r l a n d  C++ 

* By Michael   Abrash 
*/  

* 

* 

#i ncl   ude  <dos . h> / *  c o n t a i n s  MK-FP macro * /  

# d e f i n e  EVGA-SCREEN-WIDTHKIN-BYTES 80 
/*  memory o f f s e t   f r o m   s t a r t   o f  

one row t o   s t a r t   o f   n e x t  * /  
# d e f i n e  EVGA-SCREEN-SEGMENT  OxAOOO 

{{define  GCINDEX Ox3CE 
/*  d i s p l a y  memory  segment * /  

/ *  G r a p h i c s   C o n t r o l  1 e r  
I n d e x   r e g i s t e r   p o r t  * /  

l d e f  i ne GC-DATA Ox3CF 
/ *  G r a p h i c s   C o n t r o l l e r  

D a t a   r e g i s t e r   p o r t  * /  
# d e f i n e  SET-RESET-INDEX 0 / *  i n d e x e s   o f   n e e d e d  * /  
# d e f i n e  ENABLELSETLRESET-INDEX 1 I* G r a p h i c s   C o n t r o l l e r  * /  
# d e f i n e  BIT-MASK-INDEX 8 / *  r e g i s t e r s  * /  

/ *  
* Draws a d o t   a t  ( X O . Y O )  i n  w h a t e v e r   c o l o r   t h e  EGA/VGA hardware i s  
* s e t  up f o r .  L e a v e s   t h e   b i t  mask s e t   t o   w h a t e v e r   v a l u e   t h e  
* d o t   r e q u i r e d .  
* I  

v o i d  EVGADot(X0, Y O )  
u n s i g n e d   i n t  X O :  / *  c o o r d i n a t e s   a t   w h i c h   t o   d r a w   d o t ,   w i t h  * I  
u n s i g n e d   i n t  Y O :  / *  (0 .0 )  a t   t h e   u p p e r   l e f t   o f   t h e   s c r e e n  * /  
{ 

u n s i g n e d   c h a r   f a r   * P i x e l B y t e P t r :  
uns igned   cha r   P i xe lMask ;  
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/ *  C a l c u l a t e   t h e   o f f s e t   i n   t h e   s c r e e n   s e g m e n t   o f   t h e   b y t e  i n  

P i x e l B y t e P t r  - MK-FP(EVGA-SCREEN-SEGMENT. 
w h i c h   t h e   p i x e l   l i e s  * /  

( Y O  * EVGA-SCREEN-WIDTH-IN-BYTES ) + ( X0 / 8 ) I ;  

/* Generate a mask w i t h  a 1 b i t   i n   t h e   p i x e l ' s   p o s i t i o n   w i t h i n   t h e  

P ixe lMask  - Ox80 >> ( X0 & 0x07 1; 

/*  S e t   u p   t h e   G r a p h i c s   C o n t r o l l e r ' s  B i t  Mask r e g i s t e r   t o   a l l o w  

s c r e e n   b y t e  * /  

o n l y   t h e   b i t   c o r r e s p o n d i n g   t o   t h e   p i x e l   b e i n g   d r a w n   t o  
b e   m o d i f i e d  * /  

outportb(GC-INDEX. BIT-MASK-INDEX); 
outportb(GC-DATA.  PixelMask);  

/ *  D r a w  t h e   p i x e l .   B e c a u s e  o f  t h e   o p e r a t i o n   o f   t h e   s e t i r e s e t  
f e a t u r e   o f   t h e  EGA/VGA.  t h e   v a l u e   w r i t t e n   d o e s n ' t   m a t t e r .  
The s c r e e n   b y t e   i s  ORed i n   o r d e r   t o   p e r f o r m  a r e a d   t o   l a t c h   t h e  
d i s p l a y  memory. t h e n   p e r f o r m  a w r i t e   i n   o r d e r   t o   m o d i f y  it. * I  

1 
* P i x e l B y t e P t r  1 -  OxFE: 

/ *  
* Draws a l i n e   i n   o c t a n t  0 o r  3 ( I D e l t a X J  >- De l taY  ) .  
*/  

vo id   Oc tan tO(X0 .  Y O ,  D e l t a X .   D e l t a Y .   X D i r e c t i o n )  
u n s i g n e d   i n t  X O .  Y O :  / *  c o o r d i n a t e s   o f   s t a r t   o f   t h e   l i n e  * /  
u n s i g n e d   i n t   D e l t a X .  De l taY ;  / *  l e n g t h   o f   t h e   l i n e   ( b o t h  > 0 )  * /  
i n t   X D i r e c t i o n :  I* 1 i f  l i n e  i s  drawn l e f t   t o   r i g h t ,  

I 
-1 i f  d r a w n   r i g h t   t o   l e f t  * /  

i n t  Del   taYx2; 
i n t  Del taYx2MinusDel taXx2;  
i n t   E r r o r T e r m :  

/* Set  up i n i t i a l   e r r o r   t e r m  a n d   v a l u e s   u s e d   i n s i d e   d r a w i n g   l o o p  */  
De l taYx2  - De l taY  * 2: 
Del taYx2MinusDel taXx2 - De l taYx2  - ( i n t )  ( De l taX  * 2 1; 
E r ro rTe rm - De l taYx2  - ( i n t )   D e l t a X :  

/ *  D r a w  t h e   l i n e  * /  
EVGADot(X0. Y O ) ;  I* d r a w   t h e   f i r s t   p i x e l  * /  
w h i l e  ( D e l t a X - -  ) ( 

/ *  See i f  i t ' s   t i m e   t o  advance   t he  Y c o o r d i n a t e  * /  
i f  ( E r ro rTe rm >- D ) { 

back down * /  
/*  Advance  the Y c o o r d i n a t e  & a d j u s t   t h e   e r r o r   t e r m  

YO++; 
E r ro rTe rm +- Del taYx2MinusDel taXx2;  

I e l s e  { 
/ *  Add t o   t h e   e r r o r   t e r m  */ 
Er ro rTe rm +- Oel taYx2:  

1 
X0 +- X D i r e c t i o n ;  / *  advance   the  X c o o r d i n a t e  * /  
EVGADot(XD. Y O ) ;  /*  draw a p i x e l  * /  

1 
1 

/*  
* Draws a l i n e   i n   o c t a n t  1 or 2 ( I D e l t a X l  < De l taY  1. 
* /  
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v o i d   O c t a n t l ( X 0 .  Y O ,  D e l t a X .   D e l t a Y .   X D i r e c t i o n )  
u n s i g n e d   i n t  X O .  Y O :  / *  c o o r d i n a t e s  o f  s t a r t  o f  t h e   l i n e  * /  
u n s i g n e d   i n t   D e l t a X .  D e l t a Y :  I* l e n g t h   o f   t h e   l i n e   ( b o t h  > 0 )  * I  
i n t  X D i  r e c t i  on : I* 1 i f  l i n e   i s  drawn l e f t   t o   r i g h t ,  

{ 
-1 i f  drawn r i g h t   t o   l e f t  * I  

i n t   D e l t a X x 2 ;  
i n t   D e l t a X x Z M i n u s D e l t a Y x 2 :  
i n t  Er ro rTerm:  

/ *  Set  up i n i t i a l   e r r o r   t e r m  and  va lues 
De l taXxZ - Del taX * 2: 
De l taXxZMinusDel taYx2 - Del taXx2 - ( i n t  
E r r o r T e r m  - Del taXx2 - ( i n t )   D e l t a Y :  

u s e d   i n s i d e   d r a w i n g   l o o p  *I  

) ( De l taY * 2 ) :  

EVGADot(X0. Y O ) :  I* d r a w   t h e   f i r s t   p i x e l  * I  
w h i l e  ( D e l t a Y - -  ) [ 

/*  See i f  i t ' s   t i m e   t o  advance  the  X c o o r d i n a t e  *I 
i f  ( E r r o r T e r m  >- 0 1 ( 

I* Advance  the  X c o o r d i n a t e  & a d j u s t   t h e   e r r o r   t e r m  
back  down *I  

X0 +- X D i  r e c t i o n ;  
E r r o r T e r m  +- De l taXx2MinusDel taYx2:  

I* Add t o   t h e   e r r o r   t e r m  * /  
E r r o r T e r m  +- De l taXxZ:  

1 e l s e  { 

1 
YO++: I* advance  the  Y c o o r d i n a t e  * I  
EVGADot(X0. Y O ) :  I* draw a p i x e l  *I 

1 
1 

I* 
* Draws a l i n e  on t h e  EGA o r  VGA.  
* I  

void  EVGALine(X0.  Y O ,  X 1 .  Y 1 .  C o l o r )  
i n t  X O ,   Y O :  I* c o o r d i n a t e s   o f   o n e   e n d   o f   t h e   l i n e  *I  
i n t  X 1 .  Y 1 :  / *  c o o r d i n a t e s   o f   t h e   o t h e r   e n d   o f   t h e   l i n e  * /  
c h a r   C o l o r :  I* c o l o r   t o  draw 1 i n e   i n  * I  
I 

i n t   D e l t a X .   D e l t a Y :  
i n t  Temp: 

I* S e t   t h e   d r a w i n g   c o l o r  * I  

I* P u t   t h e   d r a w i n g   c o l o r   i n   t h e   S e t / R e s e t   r e g i s t e r  *I 
outportb(GC-INDEX, SET-RESETLINDEX): 
outportb(GC_DATA.  Color) ;  
/ *  Cause a l l   p l a n e s   t o   b e   f o r c e d   t o   t h e   S e t / R e s e t   c o l o r  * /  
outportb(GC_INDEX. ENABLELSET-RESETLINDEX):  
outportb(GC_DATA, OxF); 

/ *  Save h a l f   t h e   l i n e - d r a w i n g   c a s e s   b y   s w a p p i n g  Y O  w i t h  Y 1  
and X0 w i t h  X 1  i f  Y O  i s   g r e a t e r   t h a n  Y 1 .  As  a r e s u l t ,   D e l t a Y  
i s  always > 0 ,  a n d   o n l y   t h e   o c t a n t  0 - 3  cases  need t o  be 
hand1  ed. *I  

i f  ( Y O  > Y 1  ) I 
Temp - Y O ;  
Y O  - Y 1 :  
Y 1  - Temp; 
Temp - X O :  
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x0 - x1: 
X 1  - Temp: 

} 

/ *  H a n d l e   a s   f o u r   s e p a r a t e   c a s e s ,   f o r   t h e   f o u r   o c t a n t s   i n   w h i c h  

De l taX  - X 1  - X O :  / *  c a l c u l a t e   t h e   l e n g t h   o f   t h e   l i n e  

De l taY  - Y 1  - Y O :  
i f  ( De l taX  > 0 ) I 

Y 1  i s   g r e a t e r   t h a n  Y O  * /  

i n  e a c h   c o o r d i n a t e  * I  

i f  ( De l taX  > De l taY  { 

} e l s e  { 

1 
1 e l s e  { 

De l taX  = -Del  t a x :  / *  a b s o l u t e   v a l u e   o f   D e l t a X  * I  
i f  ( D e l t a X  > De l taY  { 

1 e l s e  { 

1 

OctantO(X0.  Y O ,  D e l t a X .   D e l t a Y .  1); 

O c t a n t l ( X 0 ,  Y O ,  De l taX ,   De l taY .  1): 

OctantO(X0, Y O ,  De l taX .   De l taY .  -1): 

O c t a n t l ( X 0 .  Y O ,  De l taX .   De l taY .  -1) :  

1 

/*  R e t u r n   t h e   s t a t e   o f   t h e  E G A I V G A  t o  normal *I  
outportb(GC-INDEX. ENABLE-SET-RESET-INDEX): 
outportb(GC-DATA. 0 ) :  
outportb(GC-INDEX. BIT-MASK-INDEX): 
outportb(GC-DATA. OxFF): 

1 

LISTING 35.2 135-2.C 
/*  
* Sample  program t o   i l l u s t r a t e  E G A I V G A  l i n e   d r a w i n g   r o u t i n e s .  

* C o m p i l e d   w i t h   B o r l a n d  C++ 

* By Michae l   Abrash 
*I  

* 

* 

# inc lude   <dos .h>  I* c o n t a i n s   g e n i n t e r r u p t  * /  

# d e f i n e  GRAPHICS-MODE Ox10 
i d e f i  ne TEXT-MODE 0x03 
# d e f i n e  BIOSpVIDEO-INT Ox10 
#de f  i ne X-MAX 640 / *  w o r k i n g   s c r e e n   w i d t h  * I  
# d e f i n e  Y-MAX 348 /*  w o r k i n g   s c r e e n   h e i g h t  * /  

e x t e r n   v o i d   E V G A L i n e ( ) :  

/ *  
S u b r o u t i n e   t o   d r a w  a r e c t a n g l e   f u l l   o f   v e c t o r s ,   o f   t h e   s p e c i f i e d  

* l e n g t h  and c o l o r ,   a r o u n d   t h e   s p e c i f i e d   r e c t a n g l e   c e n t e r .  
*I  

vo id   Vec to rsUp(XCen te r .  YCenter .   XLength.   YLength.   Color )  
i n t  XCenter.   YCenter:  / *  c e n t e r  o f  r e c t a n g l e   t o  fill *I  
i n t  XLength.  YLength: I* d i s t a n c e   f r o m   c e n t e r   t o   e d g e  

i n t   C o l o r :  I* c o l o r   t o   d r a w   l i n e s   i n  * I  
I 

o f   r e c t a n g l e  *I  

i n t  WorkingX.  WorkingY: 
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I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter - 
WorkingY = YCenter - 

f o r  ( : WorkingX < ( 
EVGALine(XCenter. 

I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter + 
WorkingY = YCenter - 
f o r  ( : WorkingY < ( 

EVGALine(XCenter. 

I* L i n e s   f r o m   c e n t e r  
WorkingX = XCenter + 
WorkingY = YCenter + 

t o   t o p   o f   r e c t a n g l e  * I  
XLength: 
YLength:  
XCenter + XLength ) :  WorkingX++ ) 
YCenter.   WorkingX,  WorkingY.  Color) ;  

t o   r i g h t   o f   r e c t a n g l e  *I  
XLength - 1; 
Y Length  : 
YCenter + YLength ) :  WorkingY++ ) 
YCenter .   Work ingX.   Work ingY.   Color) :  

t o   b o t t o m   o f   r e c t a n g l e  * I  
XLength - 1: 
YLength - 1;  

f o r  ( ; WorkingX >- ( XCenter - XLength 1;  WorkingX" ) 
EVGALine(XCenter.   YCenter.   WorkingX.  WorkingY,  Color) :  

I* L i n e s   f r o m   c e n t e r   t o   l e f t   o f   r e c t a n g l e  * I  
WorkingX - XCenter - XLength;  
WorkingY - YCenter + YLength - 1; 
f o r  ( : WorkingY >- ( YCenter - YLength ) :  Work ingY- -  1 

1 
EVGALine(XCenter.   YCenter.   WorkingX.  WorkingY.  Color ) :  

I* 
* Sample  program t o  d r a w   f o u r   r e c t a n g l e s   f u l l   o f   l i n e s .  
*/ 

v o i d   m a i n 0  
I 

char  temp: 

/ *  S e t   g r a p h i c s  mode *I  
-AX = GRAPHICSLMDDE: 
geninterrupt(BIOS-VIDEO-1NT): 

I* Draw e a c h   o f   f o u r   r e c t a n g l e s   f u l l   o f   v e c t o r s  *I  
VectorsUp(XLMAX I 4, Y-MAX I 4, X-MAX I 4. 

VectorsUp(X-MAX * 3 / 4, YLMAX I 4. X-MAX I 4. 

VectorsUp(XLMAX I 4,  Y-MAX * 3 I 4.  XKMAX / 4.  

VectorsUp(X-MAX * 3 I 4. YLMAX * 3 / 4 .  X-MAX I 4 .  

Y L M A X  I 4.  1); 

Y-MAX f 4. 2 ) :  

Y-MAX / 4 .  3 ) ;  

Y"AX / 4, 4 ) :  

I* W a i t   f o r   t h e   e n t e r   k e y  t o  be p r e s s e d  *I  
scanf   ( "Xc" ,   &temp) ; 

I* R e t u r n   b a c k   t o   t e x t  mode * I  

geninterrupt(BIOS-VIDE0-INT): 
-AX - TEXT-MODE; 

1 

Looking at EVGALine 
The EVGALine function itself performs  four  operations. EVGALie first sets up  the 
VGAs hardware so that all  pixels drawn will be in the desired color. This is  accom- 
plished by setting two of the VGA's registers, the Enable Set/Reset register and  the 
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Set/Reset register. Setting  the Enable  Set/Reset to the value OFH,  as  is done in 
EVGALine, causes all drawing to  produce pixels in the color  contained  in  the  Set/ 
Reset register. Setting the Set/Reset  register to the passed color, in  conjunction with 
the Enable  Set/Reset  setting of OFH, causes all drawing done by EVGALine and  the 
functions it calls to  generate  the passed color. In summary, setting up  the Enable 
Set/Reset and Set/Reset registers in this way causes the  remainder of EVGALine to 
draw a  line  in the specified color. 
EVGALine next  performs a simple check  to cut  in half the  number of line  orienta- 
tions that must  be handled separately. Figure 35.4 shows the  eight possible line 
orientations  among which a  Bresenham’s  algorithm  implementation  must distin- 
guish. (In  interpreting Figure 35.4, assume that lines radiate  outward  from  the  center 
of the figure, falling into  one of eight  octants  delineated by the  horizontal  and verti- 
cal axes and  the two diagonals.) The  need  to categorize lines into these  octants falls 
out of the  major/minor axis nature of the  algorithm; the  orientations  are distin- 
guished by which coordinate  forms  the  major axis and by whether  each of X and Y 
increases or decreases  from the line  start to the line end. 

A moment  of  thought will show, howevel; that four of  the  line  orientations are p redundant. Each  of  the  four  orientations  for which DeltaY, the Y component  of  the 
line, is less than 0 (that  is, for which the  line  start Y coordinate is  greater  than  the 
line  end Y coordinate) can be transformed into  one of the  four  orientations for 
which the  line  start Y coordinate  is  less  than  the  line  end Y coordinate simply  by 
reversing the  line  start  and end  coordinates, so that  the  line  is drawn in  the  other 
direction. EVGALine does  this by swapping (XO, YO) (the  line start coordinates) 
with (XI, Y l )  (the  line end  coordinates)  whenever YO is  greater  than YI .  

This  accomplished, EVGALine must still distinguish among  the  four  remaining line 
orientations.  Those  four  orientations  form two major  categories,  orientations  for 
which the X dimension is the major axis of the line and  orientations  for which the Y 
dimension is the major axis. As shown in Figure 35.4, octants 1 (where X increases 
from  start to finish) and 2 (where X decreases  from  start to finish) fall into  the  latter 
category, and differ in only one respect, the direction in which the X coordinate 
moves when it changes.  Handling of the  running  error of the  line is exactly the same 
for  both cases, as one would expect given the symmetry  of lines  differing only in the 
sign  of DeltaX, the X coordinate of the line. Consequently, for  those cases where 
DeltaX is less than zero, the  direction of X movement is made negative, and  the 
absolute value of DeltaX is used for  error term calculations. 
Similarly, octants 0 (where X increases from  start to finish) and 3 (where X decreases 
from  start to finish) differ only in  the direction  in which the X coordinate moves 
when it  changes. The difference between line drawing in  octants 0 and 3 and line 
drawing in  octants 1 and 2 is that in  octants 0 and 3, since X is the major axis, the X 
coordinate  changes on every pixel of the line and  the Y coordinate  changes only 

666 Chapter 35 



Decreasing Y 
\ Octant 5 A Octant 6 

D e l t a X  < 0 
D e l t a Y  < 0 
I D e l t a Y l  > I D e l t a X l   I D e l t a Y l  > I D e l t a X l  

D e l t a X  > 0 
D e l t a Y  < 0 f 

Octant 4 
D e l t a X  < 0 
D e l t a Y  < 0 
I O e l t a X l  > I D e l t a Y  1 

O e l t a Y  < 0 
I D e l t a X l  > I D e l t a Y  I 

Decreasing X 4 b increasing X 
I D e l t a X l  > I D e l t a Y l  
D e l t a X  < 0 
O e l t a Y  > 0 

Octant 3 

D e l t a X  < 0 
I D e l t a Y J  > J D e l t a X J   J D e l t a Y 1  > J D e l t a X J  

D e l t a X  > 0 
D e l t a Y  > 0 

Octant 1 
increasing Y 

Bresenharn b eight  possible line orientations. 
Figure 35.4 

when the  running  error of the  line dictates. In  octants 1 and 2, the Y coordinate 
changes on every pixel and  the X coordinate  changes only when the  running  error 
dictates,  since Y is the major axis. 
There is one line-drawing function  for  octants 0 and 3,  OctantO, and  one line-draw- 
ing  function  for  octants 1 and 2, Octantl. A single function with if statements  could 
certainly be used to handle all four  octants, but  at a significant performance cost. 
There is, on the  other  hand, very little performance cost to  grouping  octants 0 and 3 
together  and octants 1 and 2 together, since the two octants  in  each  pair differ only 
in the direction of change of the X coordinate. 
EVGALiie determines which line-drawing function to call and with what value for 
the direction of change of the X coordinate based on two criteria:  whether DeltaX is 
negative or  not,  and  whether  the absolute value of DeltaX (IDeltaXI) is  less than 
DeltaY or  not, as  shown in Figure 35.5. Recall that  the value of DeltaY, and  hence  the 
direction of change of the Y coordinate, is guaranteed to be non-negative as a  result 
of the  earlier  elimination of four of the  line  orientations. 
After calling the  appropriate  function to draw the line (more  on those  functions 
shortly), EVGALiie restores the state of the Enable  Set/Reset register to its default 
of zero.  In this state,  the  Set/Reset register has no effect, so it is not necessary to 
restore  the state of the  Set/Reset register as  well. EVGALine also restores the state of 
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the Bit  Mask register  (which, as we  will see, is modified by EVGADot, the pixeldrawing 
routine actually used to  draw each pixel of the  lines produced by EVGALine) to its 
default of OFFH. While it would be more  modular  to have EVGADot restore  the  state 
of the Bit  Mask register  after drawing each  pixel,  it would  also be considerably slower 
to do so. The same  could  be said of having EVGADot set  the  Enable  Set/Reset and 
Set/Reset registers for  each pixel: While modularity would improve, speed would 
suffer markedly. 

Drawing  Each  Line 
The Octant0 and Octantl functions draw lines  for which IDeltaXl is greater  than 
DeltaY and lines  for which IDeltaXl is  less than  or  equal  to DeltaY, respectively. The 
parameters  to Octant0 and Octantl are the  starting  point of the  line,  the  length  of 
the  line  in  each  dimension, and XDirection, the amount by which the X coordinate 
should be changed when it moves. Direction must be either 1 (to draw  toward the 
right  edge of the  screen)  or -1 (to draw  toward the  left  edge of the screen), No value 
is required  for  the  amount by which the Y coordinate  should be changed; since 
DeltaY is guaranteed  to be positive, the Y coordinate always changes by 1 pixel. 
Octant0 draws lines  for which IDeltaXl is greater  than DeltaY. For such lines, the X 
coordinate of each pixel  drawn differs from  the previous pixel by either 1 or -1, 
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depending  on  the value of XDirection. (This makes it possible for Octant0 to draw 
lines in both  octant 0 and  octant 3.) Whenever ErrorTerm becomes non-negative, 
indicating that  the  next Y coordinate is a  better  approximation of the line  being 
drawn, the Y coordinate is increased by 1. 
Octantl draws lines for which IDeltaXl is less than  or  equal  to DeltaY. For these  lines, 
the Y coordinate of each pixel drawn is 1 greater  than  the Y coordinate of the previ- 
ous pixel. Whenever ErrorTerm becomes  non-negative,  indicating that  the  next X 
coordinate is a  better  approximation of the line  being  drawn,  the X coordinate is 
advanced by either 1 or -1, depending  on  the value of XDirection. (This makes it 
possible for Octantl to draw lines  in both  octant 1 and  octant 2.) 

Drawing Each  Pixel 
At the  core of Octant0 and Octantl is a pixel-drawing function, EVGADot.  EVGADot 
draws a pixel at  the specified coordinates  in whatever color the hardware of the VGA 
happens to be set up for. As described earlier, since the  entire line drawn by EVGALine 
is  of the same color, line-drawing performance is improved by setting the VGAs 
hardware up  once in EVGALine before  the  line is drawn, and  then drawing all the 
pixels in the line  in the same color via EVGADot. 
EVGADot makes certain  assumptions about  the screen. First, it assumes that  the 
address of the byte controlling  the pixels at  the  start of a given  row on  the screen is 
80 bytes after the start of the row immediately above it. In  other words, this imple- 
mentation of EVGADot only works for  screens  configured  to  be 80 bytes wide. Since 
this is the  standard  configuration of all  of the modes EVGALine is designed to work 
in, the assumption of 80 bytes per row should be no problem. If it is a  problem, however, 
EVGADot could easily be  modified to retrieve the BIOS integer variable at address 
0040:004A, which contains  the  number of bytes per row for  the  current video mode. 
Second, EVGADot assumes that  screen memory is organized as a  linear  bitmap start- 
ing  at address A000:0000, with the pixel at  the  upper left of the screen  controlled by 
bit 7 of the byte at offset 0, the  next pixel to the  right  controlled by bit 6, the  ninth 
pixel controlled by bit 7 of the byte at offset 1, and so on.  Further, it assumes that  the 
graphics  adapter’s  hardware is configured such that  setting the Bit  Mask register to 
allow modification of only the bit  controlling  the pixel of interest  and  then ORing a 
value of  OFEH  with display  memory will draw that pixel correctly without affecting 
any other dots. (Note  that OFEH  is used rather  than OFFH or 0 because  some  opti- 
mizing compilers turn ORs with the  latter values into  simpler  operations or optimize 
them away entirely. As explained later, however,  it’s not  the value that’s ORed that 
matters, given the way  we’ve set up  the VGAs hardware; it’s the act of ORing itself, 
and  the value OFEH forces the compiler to perform  the OR operation.) Again, this is 
the  normal way in which modes OEH,  OFH, 10H,  and 12H operate. As described 
earlier, EVGADot also assumes that  the VGA is set up so that  each pixel drawn in the 
above-mentioned manner will be drawn in  the  correct color. 
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Given those assumptions, EVGADot becomes  a surprisingly simple function. First, 
EVGADot builds a far pointer that points to the byte  of  display memory  controlling 
the pixel to be drawn. Second,  a mask is generated consisting of zeros for all bits 
except  the bit controlling the pixel to be drawn. Third,  the Bit Mask register is set to 
that mask, so that  when display memory is read  and  then written, all  bits except  the 
one  that controls the pixel to be drawn will be left unmodified. 
Finally, OFEH is ORed with the display memory byte controlling the pixel to be drawn. 
ORing with OFEH first reads display memory, thereby loading the VGA's internal 
latches with the contents of the display  memory  byte controlling the pixel  to  be  drawn, 
and  then writes to display memory with the value OFEH. Because  of the  unusual way 
in which the VGA's data  paths work and  the way in which EVGALine sets up  the 
VGA's Enable Set/Reset and Set/Reset registers, the value that is written by the OR 
instruction is ignored.  Instead, the value that actually gets placed in display memory 
is the color that was  passed to EVGALine and placed  in the Set/Reset  register. The Bit 
Mask register, which was set up in step three above,  allows  only the single bit control- 
ling the pixel to be drawn to be set to this color value.  For more  on  the various 
machineries  the VGA brings to bear  on graphics data, look back to Chapter 25. 
The result of  all this is simply a single pixel drawn in the color set up in EVGALine. 
EVGADot may seem excessively complex  for  a  function  that  does nothing  more that 
draw one pixel, but  programming  the VGA isn't trivial (as we've seen in the early 
chapters of this part). Besides,  while the explanation of EVGADot is lengthy, the 
code itself is only five lines long. 
Line drawing would be somewhat faster if the  code of EVGADot were made  an inline 
part of Octant0 and Octantl, thereby saving the overhead of preparing  parameters 
and calling the function. Feel free to do this if  you  wish; I maintained EVGADot as a 
separate  function  for clarity and for ease  of inserting  a pixel-drawing function  for  a 
different graphics adapter,  should  that be desired. If  you do install a pixel-drawing 
function  for  a  different  adapter, or a fundamentally different  mode such as a 256- 
color SuperVGA mode,  remember to  remove the  hardware-dependent outportb lines 
in EVGALine itself. 

Comments on the C Implementation 
EVGALine does no  error checking whatsoever. My assumption in writing EVGALine 
was that  it would be ultimately used as the lowest-level primitive of a graphics soft- 
ware package, with operations such as error checking and clipping performed  at a 
higher level.  Similarly, EVGALine is tied to the VGA's screen coordinate system  of 
(0,O) to (639,199) (in  mode OEH), (0,O) to (639,349) (in  modes OFH and  lOH),  or 
(0,O) to (639,479) (in  mode  12H), with the  upper left corner  considered to be (0,O). 
Again, transformation from any coordinate system to the coordinate system used by 
EVGALine can be performed  at a higher level. EVGALine is specifically designed to 
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do  one thing: draw lines into  the display memory of the VGA. Additional  functional- 
ity can  be  supplied by the  code  that calls EVGALine. 
The version of EVGAlLine shown in Listing 35.1 is reasonably fast, but  it is not as fast 
as it might be. Inclusion of EVGADot directly into Octant0 and Octantl, and, indeed, 
inclusion of Octant0 and Octantl directly into EVGALine would speed  execution by 
saving the overhead of calling and  parameter passing. Handpicked register variables 
might  speed  performance as well,  as  would the use of word OUTs rather  than byte 
OUTs. A more significant performance  increase would come  from  eliminating sepa- 
rate calculation of the address and mask for  each pixel. Since the location of each 
pixel relative to  the previous pixel is known, the address and mask could simply be 
adjusted  from one pixel to the next, rather  than recalculated  from  scratch. 
These enhancements  are  not  incorporated  into  the  code in Listing 35.1 for  a  couple 
of reasons. One reason is that it’s important  that  the workings of the algorithm  be 
clearly visible in  the  code,  for  learning  purposes.  Once  the  implementation is under- 
stood, rewriting it for improved performance would certainly be a worthwhile exercise. 
Another reason is that when flat-out speed is needed, assembly language is the best 
way to go. Why produce  hard-to-understand C code to boost  speed a bit when  assem- 
bly-language code  can  perform  the same  task at two or  more times the  speed? 
Given which, a high-speed assembly language version of EVGALine would  seem  to 
be a logical next  step. 

Bresenham’s Algorithm  in Assembly 
Listing 35.3 is a high-performance  implementation of Bresenham’s algorithm, writ- 
ten  entirely  in assembly language. The  code is callable from C just as is Listing 35.1, 
with the same name, EVGALine, and with the same parameters.  Either of the two 
can  be  linked to any program  that calls EVGALine, since they appear to be identical 
to the calling program.  The only difference between the two versions is that  the 
sample program  in Listing 35.2 runs over three times as fast on a 486 with an ISA-bus 
VGA when calling the assembly-language version of EVGALine as when calling the C 
version, and  the difference would be considerably greater yet on a local bus, or with 
the use of write mode 3. Link each version with Listing 35.2 and  compare perfor- 
mance-the difference is startling. 

LISTING 35.3 135-3.ASM 
Fas t   assemb le r   imp lemen ta t i on  o f  B r e s e n h a m ‘ s   l i n e - d r a w i n g   a l g o r i t h m  
f o r   t h e  EGA and VGA.  Works i n  modes OEh. OFh. 10h.  and  12h. 
B o r l a n d  C++ n e a r - c a l l a b l e .  
Bit mask a c c u m u l a t i o n   t e c h n i q u e  when ( D e l t a X (  >= ( D e l t a Y l  

suggested   by  Jim Mackraz.  

Assembled w i t h  TASM 

By Michae l   Abrash 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
: C - c o m p a t i b l e   l i n e - d r a w i n g   e n t r y   p o i n t   a t  -EVGALine. 
: N e a r   C - c a l l a b l e   a s :  

EVGALine(X0. Y O ,  X 1 .  Y 1 .  C o l o r ) ;  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

* 

model   smal l  
.code 

: Equates. 

EVGA-SCREEN-WIDTH-IN-BYTES equ 

EVGA-SCREEN-SEGMENT 
GC-INDEX 

SET-RESET-INDEX 
ENABLE-SET-RESET-INDEX 
BIT-MASK-INDEX 

: Stack   f rame.  

EVGALineParms s t r u c  
dw 
dw 

x0 dw 
Y O  dw 
x1 dw 
Y 1  dw 
Co lor   db  

db 
EVGALineParms  ends 

80 ;memory o f f s e t   f r o m   s t a r t   o f  
; one  row t o   s t a r t   o f   n e x t  
: i n   d i s p l a y  memory 

OaOOOh : d i s p l a y  memory segment 
3 c e h   ; G r a p h i c s   C o n t r o l l e r  

0 
1 
8 

: I n d e x   r e g i s t e r   p o r t  
: i ndexes   o f   needed  
; G r a p h i c s   C o n t r o l  1 e r  
: r e g i s t e r s  

;pushed BP 
: pushed   re tu rn   add ress  (make doub le  
: w o r d   f o r  f a r  c a l l )  
: s t a r t i n g  X c o o r d i n a t e   o f   l i n e  
; s t a r t i n g  Y c o o r d i n a t e  o f  l i n e  
;end ing  X c o o r d i n a t e   o f   l i n e  
;end ing  Y c o o r d i n a t e   o f   l i n e  
; c o l o r   o f   l i n e  
;dummy t o  pad t o  w o r d   s i z e  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; L ine   d raw ing   macros .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

: Macro t o   l o o p   t h r o u g h   l e n g t h   o f   l i n e ,   d r a w i n g   e a c h   p i x e l   i n   t u r n .  
; Used f o r   c a s e   o f   ( D e l t a X I  >- ( D e l t a Y l .  
: I n p u t :  

MOVE-LEFT: 1 i f  De l taX  < 0, 0 e l s e  
AL: p i x e l  mask f o r   i n i t i a l   p i x e l  
BX: ( D e l t a X I  
D X :  a d d r e s s   o f  GC d a t a   r e g i s t e r .   w i t h   i n d e x   r e g i s t e r   s e t   t o  

SI: De l taY  
i n d e x   o f  B i t  Mask r e g i s t e r  

E S : D I :  

LINE1  macro 
1 o c a l  
1 o c a l  
mov 

d i s p l a y  memory address o f  b y t e   c o n t a i n i n g   i n i t i a l  
p i x e l  

MOVE-LEFT 
L ineLoop.   MoveXCoord,   NextPixe l  , L i n e l E n d  
MoveToNextByte.   ResetBi tMaskAccumulator  
cx.   bx :# o f   p i x e l s   i n   l i n e  
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j c x z   L i n e l E n d   ; d o n e  i f  t h e r e   a r e   n o   m o r e   p i x e l s  
: ( t h e r e ' s   a l w a y s  a t  l e a s t   t h e  one p i x e l  
: a t   t h e   s t a r t   l o c a t i o n )  

s h l   s i . l  ;Del taY * 2 
mov b p . s i  : e r r o r   t e r m  
sub  bp.bx : e r r o r   t e r m   s t a r t s  a t  Oel taY * 2 - Oel taX 
s h l   b x . 1  :Del taX * 2 
sub s i  .bx :Del taY * 2 - De l taX  * 2 ( u s e d   i n   l o o p )  
add   bx .s i  ;Oel taY * 2 ( u s e d   i n   l o o p )  
mov ah .a l  ; s e t   a s i d e   p i x e l  mask f o r   i n i t i a l   p i x e l  

: w i t h  AL ( t h e   p i x e l  mask accumu la to r )  s e t  
: f o r   t h e   i n i t i a l   p i x e l  

L ineLoop:  

: See i f  i t ' s   t i m e   t o  advance  the Y c o o r d i n a t e   y e t .  

and  bp.bp  :see i f  e r r o r   t e r m   i s   n e g a t i v e  
j s  MoveXCoord  ;yes, s t a y   a t   t h e  same Y c o o r d i n a t e  

: Advance  the Y c o o r d i n a t e ,   f i r s t   w r i t i n g  all p i x e l s   i n   t h e   c u r r e n t  
: b y t e .   t h e n  move t h e   p i x e l  mask e i t h e r   l e f t   o r   r i g h t ,   d e p e n d i n g  
: on MOVE-LEFT. 

o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e  
x c h g   b y t e   p t r   [ d i l  .a1 

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
; s e t / r e s e t   i s   e n a b l e d   f o r  all p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

add di.EVGALSCREEN-WIOTH_IN-BYTES ; i nc remen t  Y c o o r d i n a t e  
a d d   b p . s i   : a d j u s t   e r r o r   t e r m   b a c k  down 

: Move p i x e l  mask one p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVELLEFT). a d j u s t i n g   d i s p l a y  memory address when p i x e l  mask wraps. 

i f  MOVE-LEFT 

e l s e  

end i  f 

r o l   a h . 1  :move p i x e l  mask 1 p i x e l   t o   t h e   l e f t  

r o r   a h . 1  :move p i x e l  mask 1 p i x e l   t o   t h e   r i g h t  

j n c   R e s e t B i t M a s k A c c u m u l a t o r   : d i d n ' t   w r a p   t o   n e x t   b y t e  
j m p   s h o r t   M o v e T o N e x t B y t e   ; d i d   w r a p   t o   n e x t   b y t e  

; Move p i x e l  mask one p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVE-LEFT), a d j u s t i n g   d i s p l a y  memory a d d r e s s   a n d   w r i t i n g   p i x e l s  
: i n   t h i s   b y t e  when p i x e l  mask wraps. 

MoveXCoord: 

i f  MOVELLEFT 

e l s e  

end i  f 

add  bp.bx 

r o l   a h . 1  ;move p i x e l  mask 1 p i x e l   t o   t h e   l e f t  

r o r   a h . 1  ;move p i x e l  mask 1 p i x e l   t o   t h e   r i g h t  

j n c   N e x t P i x e l  : i f  s t i l l   i n  same b y t e ,  no need t o  

o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e .  
x c h g   b y t e   p t r   C d i 1 , a l  

; i n c r e m e n t   e r r o r   t e r m  & keep same 

: m o d i f y   d i s p l a y  memory y e t  
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; l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
; p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t l r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
; v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

MoveToNextByte: 
i f  MOVE-LEFT 

e l s e  

e n d i  f 
ResetBi tMaskAccumulator :  

N e x t P i x e l  : 

dec d i   ; n e x t   p i x e l   i s   i n   b y t e   t o   l e f t  

i n c   d i  ; n e x t   p i x e l   i s   i n   b y t e   t o   r i g h t  

sub a1 .a1 

o r  a1 , a h   : a d d   t h e   n e x t   p i x e l   t o   t h e   p i x e l  mask 

1 oop  LineLoop 

; r e s e t   p i x e l  mask  accumulator  

; a c c u m u l a t o r  

: W r i t e   t h e   p i x e l s   i n   t h e   f i n a l   b y t e .  

L i n e l E n d :  
o u t   d x . a l   ; s e t   u p   b i t  mask f o r   p i x e l s   i n   t h i s   b y t e  
x c h g   b y t e   p t r   [ d i ] . a l  

; l o a d   l a t c h e s   a n d   w r i t e   p i x e l s ,   w i t h   b i t  mask 
; p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
; s e t l r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

endm 

; Macro t o   l o o p   t h r o u g h   l e n g t h   o f   l i n e ,   d r a w i n g   e a c h   p i x e l   i n   t u r n .  
: Used f o r   c a s e   o f   D e l t a X  < D e l t a Y .  
; I n p u t :  

MOVE-LEFT: 1 i f  De l taX < 0.  0 e l s e  
AL: p i x e l  mask f o r   i n i t i a l   p i x e l  
EX: I D e l   t a x  I 
D X :  a d d r e s s   o f  GC d a t a   r e g i s t e r .   w i t h   i n d e x   r e g i s t e r   s e t   t o  

S I :  Del taY 
ES:DI: d i s p l a y  memory a d d r e s s   o f   b y t e   c o n t a i n i n g   i n i t i a l  

i n d e x   o f   B i t  Mask r e g i s t e r  

p i x e l  

LINE2  macro MOVE-LEFT 
l o c a l   L i n e L o o p .  MoveYCoord.  ETermAction.  LineEEnd 
mov c x , s i  ;# o f   p i x e l s  i n  l i n e  
j c x z  LineEEnd :done i f  t h e r e   a r e   n o   m o r e   p i x e l s  
s h l   b x . 1  
mov bp.bx 
s u b   b p . s i  
s h l   s i  , I  
s u b   b x . s i  
add s i   . b x  

;De l taX * 2 
; e r r o r   t e r m  
: e r r o r   t e r m   s t a r t s   a t   D e l t a X  * 
;De l taY * 2 
:De l taX * 2 - De l taY * 2 (used 
;De l taX * 2 (used i n   l o o p )  

: S e t   u p   i n i t i a l   b i t  mask & w r i t e   i n i t i a l   p i x e l .  

o u t   d x , a l  
x c h g   b y t e   p t r   [ d i ] . a h  

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l ,  

2 - De l taY 

i n   l o o p )  

w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t / r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  
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LineLoop: 

: See i f  i t ' s   t i m e   t o  advance  the  X c o o r d i n a t e   y e t .  

and  bp.bp ; s e e  i f  e r r o r   t e r m   i s   n e g a t i v e  
j ns   ETermAc t ion  ;no.  advance X c o o r d i n a t e  
a d d   b p . s i  : i n c r e m e n t   e r r o r   t e r m  & keep same 
j m p   s h o r t  MoveYCoord ; X c o o r d i n a t e  

ETermAct ion:  

: Move p i x e l  mask o n e   p i x e l   ( e i t h e r   r i g h t   o r   l e f t ,   d e p e n d i n g  
: on MOVE-LEFT). a d j u s t i n g   d i s p l a y  memory address  when p i x e l  mask  wraps. 

i f  MOVELLEFT 
r o l  a1 .1 
s b b   d i . 0  

r o r  a1 .1 
a d c   d i . 0  

o u t   d x . a l  
add  bp.bx 

e l s e  

e n d i  f 

: Advance Y c o o r d i n a t e .  

MoveYCoord: 
add di.EVGALSCREENLWIDTHLINLBYTES 

; W r i t e   t h e   n e x t   p i x e l .  

x c h g   b y t e   p t r   [ d i l . a h  

; s e t  new b i t  mask 
; a d j u s t   e r r o r   t e r m   b a c k  down 

: l o a d   l a t c h e s   a n d   w r i t e   p i x e l ,   w i t h   b i t  mask 
: p r e s e r v i n g   o t h e r   l a t c h e d   b i t s .   B e c a u s e  
: s e t / r e s e t   i s   e n a b l e d   f o r   a l l   p l a n e s ,   t h e  
: v a l u e   w r i t t e n   a c t u a l l y   d o e s n ' t   m a t t e r  

1 oop L i  neLoop 

endm 
L i  ne2End: 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
; L i n e   d r a w i n g   r o u t i n e .  * 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

pub1 i c -EVGALi ne 
-EVGALi ne p r o c   n e a r  

push bp 
mov bp .sp  
push s i  
push d i  
push ds 

; P o i n t  D S  t o   d i s p l a y  memory. 

; p r e s e r v e   r e g i s t e r   v a r i a b l e s  

mov ax,  EVGA 
mov ds  ,ax 

; Se t   t he   Se t /Rese t   and  
; t h e   s e l e c t e d   c o l o r .  

SCREENLSEGMENT 

S e t / R e s e t   E n a b l e   r e g i s t e r s   f o r  

Bresenham Is Fast, and Fast Is Good 675 



mov 
mov 
o u t  
i nc 
mov 
o u t  
dec 
mov 
o u t  
i nc 
mov 
o u t  

: Get   De l taY  

mov 
mov 

sub 
j n s  

dx.GC-INDEX 
a1 .SET-RESET-I 
d x , a l  
dx  
a1  . [bp+Color l  
d x . a l  
dx  
a1 .ENAELE-SET- 
d x , a l  
dx  
a1 , O f f h  
d x . a l  

s i ,  [bp+Y11 
ax,  [bp+YD] 

s i   , a x  

NDEX 

RESET-INDEX 

; l i n e  Y s t a r t  
; l i n e  Y end,  used l a t e r  i n  
; c a l c u l a t i n g   t h e   s t a r t   a d d r e s s  
; c a l   c u l   a t e   D e l   t a Y  

C a l c S t a r t A d d r e s s  ; i f  p o s i t i v e ,   w e ' r e   s e t  

: Del taY i s   n e g a t i v e  - -  swap c o o r d i n a t e s  so w e ' r e   a l w a y s   w o r k i n g  
: w i t h  a p o s i t i v e   D e l t a Y .  

mov ax, [bp+Y11  ;set  l i n e   s t a r t   t o  Y 1 .  f o r   u s e  

mov dx,  [bp+XO] 
xchg  dx.  [bp+X11 
mov [bp+XO] .dx  ;swap X c o o r d i n a t e s  
n e g   s i   : c o n v e r t   t o   p o s i t i v e   D e l t a Y  

: i n  c a l c u l a t i n g   t h e   s t a r t   a d d r e s s  

: C a l c u l a t e   t h e   s t a r t i n g   a d d r e s s  i n  d i s p l a y  memory o f   t h e   l i n e .  
: H a r d w i r e d   f o r  a s c r e e n   w i d t h   o f  80 b y t e s .  

C a l c S t a r t A d d r e s s :  
s h l   a x . 1  : Y O  * 2 ; Y O  i s   a l r e a d y  i n  AX 
sh l   ax .1  : Y O  * 4 
s h l   a x . 1  : Y O  * 8 
sh l   ax .1  : Y O  * 1 6  
mov d i  .ax 
sh l   ax .1  : Y O  * 32 
s h l   a x . 1  : Y O  * 64 
add  d i ,ax  : Y O  * 80 
mov dx ,  [bp+XOI 
mov c l   , d l   : s e t   a s i d e   l o w e r  3 b i t s   o f  c o l u m n   f o r  
and  c1.7 : p i x e l   m a s k i n g  
s h r   d x . 1  
s h r   d x . 1  
s h r   d x . 1   : g e t   b y t e   a d d r e s s   o f   c o l u m n   ( X 0 / 8 )  
add d i   , d x   ; o f f s e t   o f   l i n e   s t a r t  i n  d i sp lay   segmen t  

: Set   up  GC I n d e x   r e g i s t e r   t o   p o i n t   t o   t h e   B i t  Mask r e g i s t e r .  

mov  dx,GC-INDEX 
mov al.EIT-MASK-INDEX 
o u t   d x . a l  
i n c   d x   ; l e a v e  DX p o i n t i n g   t o   t h e  GC D a t a   r e g i s t e r  

; S e t   u p   p i x e l  mask ( i n - b y t e   p i x e l   a d d r e s s ) .  
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mov a l . 8 0 h  
s h r  a1 . c l  

: C a l c u l a t e   D e l t a X .  

mov bx. [bp+Xl]  
sub  bx.[bp+XOI 

: H a n d l e   c o r r e c t   o n e  o f  f o u r   o c t a n t s  

j s  NegDel t a x  
cmp b x .   s i  
j b   O c t a n t l  

: De l taX >- Del   taY >- 0 .  

L I N E l  0 
jmp EVGALi neDone 

: Del taY > De l taX >- 0. 

O c t a n t l :  
LINE2 0 
j m p   s h o r t  EVGALineDone 

NegDel t a x :  
neg  bx : I D e l   t a x  I 
cmp b x . s i  
j b   O c t a n t 2  

: I D e l t a X l  >- Del taY  and  Del taX < 0. 

L I N E l  1 
j m p   s h o r t  EVGALineDone 

: I D e l t a X l  < Del taY  and  Del taX < 0.  

Octan t2 :  
LINE2 1 

EVGALi neDone: 

: R e s t o r e  EVGA s t a t e .  

mov 
o u t  
dec 
mov 
o u t  
i n c  
sub 
o u t  

POP 
POP 
POP 
POP 
r e t  

- EVGALi ne 

end 

a1 . O f f h  
d x . a l   : s e t   B i t  Mask r e g i s t e r   t o   O f f h  
d x  
al.ENABLE-SET-RESET-INDEX 
d x . a l  
d x  
a1 .a1 
d x . a l   : s e t   E n a b l e   S e t / R e s e t   r e g i s t e r   t o  0 

ds 
d i  
s i  
bP 

endp 

Bresenharn Is Fast, and Fast Is Good 677 



An explanation of the workings of the  code  in Listing 35.3 would be a lengthy one, 
and would be  redundant since the basic operation of the  code in Listing 35.3 is no 
different  from  that of the  code  in Listing 35.1, although  the  implementation is much 
changed  due to the  nature of  assembly language and also due to designing for  speed 
rather  than for clarity.  Given that you thoroughly  understand  the C implementation 
in Listing 35.1, the assembly language  implementation in Listing 35.3, which is 
well-commented, should speak for itself. 
One  point I do want to make is that Listing 35.3 incorporates a clever notion  for 
which  credit is due Jim Mackraz, who  described the  notion in  a  letter written in 
response to an article I wrote long  ago in the late and  lamented Programmer’s Jour- 
nul. Jim’s suggestion was that when drawing lines  for  which IDeltaXl is greater  than 
IDeltaYI, bits set to 1 for  each of the pixels controlled by a given  byte can  be accu- 
mulated in  a register, rather  than drawing each pixel individually. All the pixels 
controlled by that byte can then be drawn at  once, with a single access to display 
memory,  when all pixel processing associated with that byte has been  completed. 
This  approach can save many OUTS and many display memory reads  and writes 
when drawing nearly-horizontal lines, and that’s important because EGAs and VGAs 
hold  the CPU up  for a  considerable period of time on  each 1/0 operation  and 
display memory access. 
All too many PC programmers fall into  the high-level-language trap of thinking  that 
a  good  algorithm  guarantees  good  performance.  Not so: As our two implementa- 
tions of Bresenham’s algorithm graphically illustrate (pun  not originally intended, 
but allowed to stand once recognized), truly great PC code  requires both a  good 
algorithm and a  good assembly implementation.  In Listing 35.3, we’ve got both- 
and my-oh-my, isn’t it fun? 
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