Bresenham Line-Drawing
Algorithm

Phil Koopman, Jr.

j SCREEN #3
North Kingstown, Rhode Island 0 \ "PC" COMPATIBLE EGA, CGA, AND TEXT MODES
. . 1 HEX \ Machine specific -~ change for your machinel!!
The task of drawing a straight line 2 CODE SET-CGA-MODE (->) \ Set mode and clear screen
on a graphics screen is a fundamen- 3 AX , # 0004 MOV 10 INT \ 320 x 200 in 3 colors
g 4 NEXT JMP END-CODE
tal building block for most computer | g copg SET-CGA-HIRES-MODE (->) \ Set mode and clear screen
graphics applications. Unfortunately, 6 AX , # 0006 MOV 10 INT \ 640 x 200 in 2 colors
this capability is not included in many g CODgEggTJg(P;A Mgt;g-d()DE)) \ Set de d clear screen
. . - -. - mo an e
Forth implementations and, for that | o ™™, >F Fearo®uc, & =70 oo \ 640 x 350 in 16 colors

matter, is not included in the ROM |10 NEXT JMP END-CODE

support programs for many personal ﬁ CODE SET-TEXT-MODE (->) \ 80 col text
. . . - - - column tex

computers. This article will show you |5 *°°5, , # 0003 MOV 10 INT

how to d_raw lines on almost any |ij NEXT JMP END-CODE

graphics display, and gives complete |15 DECIMAL

listings in MVP-FORTH.
The CRT Display Layout

First, let’s establish some conven- { SCREEN #4

tions. I will assume that the graphics 0 \ "PC" COMPATIBLE POINT PLOT FOR EGA AND CGA
: . 1 HEX \ Machine specific -~ change for your machine!!

dl§play on your C‘{mDu‘ef ls_ addres§ed 2 \ Note that fancier direct screen access assembly language
using (X,Y) Cartesian coordinate pairs, 3\ programming can *SIGNIFICANTLY* speed up point plotting
where X and Y are both non-negative g \ at the cost of loss of generality.
integers (see Figure One). The point 6 CODE PLOT-POINT (X Y COLOR ->) \ Plot a single point
(0,0) — also called the origin — is 7 AX POP DX POP CX POP BX , BX XOR (page 0 for EGA)
the upper-left corner of the computer 8 AH , # 0C MOV 10 INT
screen. Each addressable point on the |, ~ NEXT JMP END-CODE
screen is called a pixel (short for ““pic- | 11 pecIMAL
ture element’’). The X coordinates | 12 \ XMAX,YMAX delimit screen boundaries

: : 13 319 CONSTANT XMAX \ Change to 639 for EGA or CGA/HIRES
represent columns of pixels (horizontal | ;3 753 COUSTANT SMAX \ Change to 349 for EGA

distance from the origin), and the Y |15 "4 CONSTANT #COLORS \ Change to 16 for EGA , 2 for CGA/HIRES
coordinates represent rows of pixels

(vertical distance from the origin).
The exact number of pixels on your

computer’s display screen is hardware-

dependent. However, some representa-

.) ; X SCREEN #5
tive values are: 320 x 200 pixels (320 | "¢\ VARIABLE DECLARATIONS, MOVE-CURSOR, SPECIAL BRESENHAM POINT
horizontal and 200 vertical pixels) for 1 DECIMAL
a PC-style, four-color color graphics 2 VARIABLE XNOW \ (XNOW,YNOW) is current cursor location
; . . 3 VARIABLE YNOW \ (0,0) is top left corner of CRT
aglapter (CGA) display; 640 x 200 4 VARIABLE COLOR \ current line draw color
pixels for a PC-style, two-color CGA 5 1 COLOR !
display; and 640 x 350 pixels for a PC- 6 \ variables per Foley & Van Dam, Fund. of ICAD, 1st ed. p 435.
. . 7 VARIABLE INCR1 VARIABLE INCR2
style sxxteen-colqr enhanced graphics 8 VARIABLE DX VARIABLE DY
adapter (EGA) display. 9
The mechanics of setting the graphics 10-: MOVE-CURSOR (X Y =>) \ Move cursor location before a draw
: . . 11 YNOW ! XNOW ! ;
d.lsplay que desired and_plottmg a 12 : POINT (XY =>) \ Point plot using COLOR variable
single point on the display are |13 COLOR @ PLOT-POINT ;
hardware-dependem, and will be left to 14 : B-POINT (X Y DELTA ->) \ For Bresenham line drawing use

the user to determine. Screens 3 and 4 |15 >R DDUP POINT R> ;
of the accompanying listing contain all
the machine-specific primitives for PCs
and clones with compatible BIOS ROM
chips. They are formatted to use the
public-domain 8088 assembler cited!.
These screens will obviously have to be
modified for use on other machines.

l % o i S ~z>.;_‘:~v-“~ B RS R W T ¥ R 5 B
FORTH Dimensions 12 Volume VIII, No. 6

SCREEN #6
0 \ BRESENHAM LINE DRAW PRIMITIVES +X +Y -X -Y
1 DECIMAL
2 : +X (X1 Y1 DELTA -> X2 Y2 DELTA)
3 ROT 1+ ROT ROT ;
4
5 : =X (X1 Y1 DELTA -> X2 Y2 DELTA)
6 ROT 1- ROT ROT ;
7
8 : +Y (X1 Y1 DELTA -> X2 Y2 DELTA)
9 SWAP 1+ SWAP ;
10
11 : =Y (X1 Y1 DELTA -> X2 Y2 DELTA)
12 SWAP 1- SWAP ;
13
14
15
SCREEN #7
0 \ BRESENHAM LINE FOR 0 < SLOPE < 1
1 DECIMAL \ Assume DX and DY are already set up
2 : LINEO<KM<1 (NEWX NEWY ->)
3 DY @ 2* 1INCR1 ! pY @ px @ - 2* INCR2 !
4 (Pick min x) OVER XNOW € >
5 IF (current cursor at min x)} DDROP XNOW € YNOW @ THEN
6 DDUP POINT
7 { Compute D) INCR1 € DX € - \ Stack: (X Y DELTA ---)
8 px @ 0 pbo DUP O<
9 IF ({ D<O0) +X B-POINT INCR1 €& +
10 ELSE (D> 0) +X +Y B-POINT INCR2 @ + THEN
11 LOOP
12 DROP DDROP ;
13
14
15
SCREEN #8
0 \ BRESENHAM LINE FOR 1 <= SLOPE < INFINITY
1 DECIMAL \ Assume DX and DY are already set up
2 : LINE1<M<Z (NEWX NEWY ->)
3 DX @ 2* INCR1 ! DX € DY € - 2* INCR2 !
4 (Pick miny) DUP YNOW € >
5 IF (current cursor at min y) DDROP XNOW @ YNOW @ THEN
6 DDUP POINT
7 (Compute D) INCR1 @ DY @ - \ Stack: (X Y DELTA ---)
8 Dy ¢ 0 DO pup 0«
9 IF (D<0) +Y B-POINT INCR1 €@ +
10 ELSE (D >= 0) +X +Y B-POINT INCR2 @ + THEN
11 LOOP
12 DROP DDROP ;
13
14
15
SCREEN #9
0 \ BRESENHAM LINE FOR -1 < SLOPE < 0
1 DECIMAL \ Assume DX and DY are already set up

Straightforward Line-Drawing
Algorithms

Now that we can assume the availa-
bility of a point-plotting word, how
can we draw lines? Horizontal and
vertical lines are relatively straightfor-
ward. For example:

: HORIZONTAL-TEST (—)
100 0 DO 110 POINT LOOP;

shows that horizontal lines are drawn
by merely incrementing an X value for
a constant Y value. Similarly, forty-
five-degree lines may be drawn by
using a word that simultaneously incre-
ments both X and Y values, such as:

: DIAGONAL-TEST (-—-)
100 0 DO
11 POINT LOOP;

But what about lines that are in-
between? A line which spans twice as
many X points as Y points would be
drawn by:

:X=2'Y ()

0 1000DO

DUP I1POINT 1+

DUP IPOINT 1+ LOOP
DROP ;

For a generalized line-drawing word
with a slope between zero and one
(meaning that the X distance of the line
is greater than the Y distance, and that
both distances are drawn from smaller
to larger numbers), we would have:

: GENERAL-UNE (X1 Y1 X2 Y2 —-)
SWAP 4 PICK - SWAP

2 : LINE-1<M<O (NEWX NEWY ->) 3PICK- >R>R 100* R>R>

3 DY @ 2* INCRL ! DY € DX @ - 2* INCR2 !

4 (Pick min x) OVER XNOW € > 1003 PICK®/ SWAP1+ 0

5 IF (current cursor at min x) DDROP XNOW @ YNOW € THEN DO 3PICK 3PICK 100/ POINT

6 DDUP POINT SWAP OVER

7 (Compute D) INCR1 @ DX @ - \ Stack: (X Y DELTA ---) +

g Dx @ o D? DgP) 0< e ROT 1+ SWAP ROT LOOP

IF D < +X B-POINT INCRL @ +

10 ELSE (D >= 0) +X -Y B-POINT INCR2 @ + THEN DROP 100/ POINT;

11 LOOP

g DROP DDROP ; The above word takes two (X,Y) co-

14 ordinate pairs as an input, and scales all

15 Y values by 100 to allow for non-integer
increments of Y. While this line-drawing
algorithm is conceptually straightfor-

Volume Viil, No. 6 13 FORTH Dimensions

THAT'S ON TIME.

FORTH.Inc.

LW
124

3
PE 4

N
n
‘I.
R

il 41
]
M
U
4

N

rd

rassf)
LI TS

Sample GODSEYE output.

ward, it does require a lot of arith-
metic. Even if clever scaling factors
were chosen to replace most multiplies
and divides with shifts and byte-moves,
the initial division of the difference
between X1 and X2 (sometimes called
“‘delta X"’ or just plain *“DX’’) by the
difference between Y1 and Y2 (*‘DY”’)
is unavoidable. Another problem is
that sixteen-bit scaled integers are not
big enough for use on high-resolution
screens. In this example, lines that span
more than 100 pixels horizontally are
improperly drawn.

The Bresenham Algorithm

The Bresenham line-drawing algo-
rithm? requires only sixteen-bit integers
with addition, subtraction and multi-
plication by two (shift left) to draw
lines. Instead of a scaled, non-integer
Y value, the algorithm shown on screen
7 uses the error accumulation term
DELTA and integer X and Y values. For
lines with a slope between zero and
one, the algorithm increments the X
value for each point, and increments
the Y value only if the DELTA value is
negative. If DELTA is negative, a posi-
tive value of DY is added to form the
new DELTA value. If DELTA is positive, a

negative value based on both DX and
DY is used to form a new DELTA value.

Of course, slight variations of this
algorithm are needed to account for
lines with slopes that are not between
zero and one. Screens 5 through 13
contain a complete Bresenham line-
drawing vocabulary for all line slopes.
Horizontal and vertical lines are treat-
ed as special cases for greater speed
and simplicity.

The vocabulary for using this draw-
ing package is:

SET-CGA-MODE (--)

Places the display in graphics mode.
This word may be redefined or renamed
as appropriate for your computer.

SET-TEXT-MODE (--)

Returns the display to an eighty-column
text mode. This word may be redefined
or renamed as appropriate for your
computer.

PLOT-POINT (X Y color -~)

Plots a single point on the graphics
screen. This word may be redefined as
appropriate for your computer.

FORTH Dimensions

14

Volume Viil, No. 6

2.
0

T A N SR SRR 2

'BRYTE
FORTH

.
'

ey

A N R S R e AR R e e M S St SR

T TR TR RN AR BRI KX XKL LY

SCREEN #10

0 \ BRESENHAM LINE FOR -INFINITY < SLOPE < -1

1 DECIMAL \ Assume DX and DY are already set up

2 : LINE-Z<M<-1 (NEWX NEWY ->)

3 DX @ 2* INCR1 ! DX @ DY € - 2* 1INCR2 !

4 (Pick min y) DUP YNOW @ >

5 IF (current cursor at min y) DDROP XNOW € YNOW € THEN
6 DDUP POINT
7
8
9

(Compute D) INCR1 @ DY € - \ Stack: {(X Y DELTA ~---) g;
DY € 0 Do pup 0«
IF (D<O0) +Y B~POINT INCR1 @ +
10 ELSE (D >= 0) =X +Y B-~POINT INCR2 @€ + THEN
11 LOOP
12 DROP DDROP ; *
13 b

SCREEN #11
0 \ LINE FOR SLOPE = INFINITY (Vertical)

[
(S0
SRR
.

1 DECIMAL \ Assume DX and DY are already set up

2 : LINEZ { NEWX NEWY ->)

3 (Pick min y) DUP YNOW & >

4 IF (current cursor at min y) DDROP XNOW @€ YNOW € THEN

5 DDUP POINT 0 (dummy DELTA value)

6 Dy @ 0 DO +Y B-~POINT LOOP

7 DROP DDROP ;

; MICRO- |

9 :
10 1
: NTROLLER
12 3
13 =
14
15
SCREEN #12

0 \ LINE FOR SLOPE = 0 (Horizontal)

1 DECIMAL \ Assume DX and DY are already set up

2 : LINEO (NEWX NEWY ->)

3 { Pick min x) OVER XNOW € >

4 IF (current cursor at min x) DDROP XNOW @ YNOW € THEN
5 DDUP POINT 0 (dummy DELTA value)

6 Dx € 0 DO +X B-POINT LOOP
7
8
9

DROP DDROP ; FEATURES
—FORTH-79 Standard Sub-Set
10 —Access to 803] features
11 —Supports FORTH and machine
12 code interrupt handlers ,:
13 —System timekeeping maintains §§
14 time and date with leap %
15 year correction 8
—Supports ROM-based self- B
SCREEN #13 starting applications 'j&
0 \ BRESENHAM PROLOGUE & CALLING ROUTINE &
1 DECIMAL g
2 : LINE (XNEW YNEW ->) é
3 DDUP (Extra copy used for final MOVE-~CURSOR) CcosT
4 OVER XNOW @ - DUP ABS DX ! OVER YNOW € - DUP ABS DY ! _ §§
5 XOR 0< {(Determine if signs are different) AIB(OEIEg(g)eMm:;v::ar'nanual—:izgﬁ &
6 DY @ 1IF Dx & IF (Not horizontal or vertical)
7 IF (Negative slope) Postage paid in North America. .:
8 DX @ DY @ > IFP LINE-1<M<0 ELSE LINE~Z<M<-1 THEN Inquire for license or quantity pricing.
9 ELSE (Positive slope) 3
10 DX @ DY @ > IF LINEOKM<1 ELSE LINE1<M<Z THEN
11 THEN RO R e]
12 ELSE (Vertical) DROP LINEZ THEN b
13 ELSE (Horizontal) DROP LINEO THEN : 3
ig MOVE-CURSOR ; 3 Bryte Computers, Inc. S
P.O. Box 46, Augusta, ME 04330 %
(207) 547-3218 B
;# A e R '.'-'-P-'-‘-\&'—:

Volume Viil, No. 6 15 FORTH Dimensions

POINT (XY--)

Same as POINT, but without a color
value for consistency with LINE.

MOVE-CURSOR (XY--)

Move the current drawing cursor loca-
tion to the point (X, Y). This word is not
called MOVE because of possible naming
conflicts in some Forth dialects.

LINE (XY -—)

Draw a line from the last cursor posi-
tion (set by either a MOVE-CURSOR or a
LINE word) to the point (X,Y). The
color of the line is determined by the
value of the variable cOLOR.

The demonstration program GODSEYE
not only draws a pretty picture, but is a
good test for the line-drawing algo-
rithm, since it uses lines from each of
the different slope-range cases of the
line-drawing program. '

Conclusion

The Bresenham line-drawing algo-
rithm is an efficient way to draw
straight lines. The lines can be drawn
even faster than with the example pro-
grams by using -techniques such as
direct screen-membory access instead of
BIOS ROM function calls, and by
writing optimized assembly language
programs that keep variables in regis-
ters instead of in memory. For more
information on computer graphics (in-
cluding mathematical derivations of
the Bresenham algorithm), please see
the recommended reading list.

In the next issue of Forth Dimensions,
I will show you how to use these line-
drawing words to draw fractal-based
landscapes.

Recommended Reading

Fundamentals of Interactive Computer
Graphics, J.D. Foley and A. Van
Dam, Addison-Wesley, Reading MA,
1982.

Principles of Interactive Computer
Graphics, W.M. Newman and R.F.
Sproull, McGraw-Hill, New York,
1979.

SCREEN #14
0 \ BRESENHAM LINE DRAWING TEST PICTURE -- GODSEYE
1 DECIMAL
2 : GODSEYE
3 SET-CGA-MODE \ Change to SET-EGA-MODE for the EGA, etc.
4 4 0 DO 3I- COLOR ! (Use this line for CGA)
5\ 1 0po 1 COLOR ! (Use this line for CGA/HIRES)
6\ 16 0DO 151 - COLOR | { Use this line for EGA)
7 76 0 DO 75 1 -
8 150 OVER 2* - 100 MOVE-CURSOR
9 150 OVER 25 + LINE
10 150 OVER 2* + 100 LINE
11 150 I 100 + LINE
12 150 OVER 2* - 100 LINE
13 DROP 3 +LOOP
14 ?TERMINAL ABORT" BREAK IN GODSEYE"
15 LOOP SET-TEXT~-MODE ;
0,0) X»
@ (60,20)
Y
@ (20,60)

Figure One. Pixel layout on a graphics screen with example points.

References

1. MVP-FORTH Integer and
Floating-Point Math, P. Koopman,
Mountain View Press, 1985.

2. ‘**Algorithm for Computer Control
of a Digital Plotter,”’ J.E. Bresen-
ham, IBM Systems Journal, Vol. 4,
No. 1, pp. 25-30, 1965.

FORTH Dimensions

16

Volume VIli, No. 6

