
91

his article presents an application of this
method to show you how this is accomplished
and then shows how the data can be present-

ed to a Windows 95 application for presentation or
manipulation. The application records a multichannel
audio input stream to a disk for later use by a Windows
95 application.

It demonstrates the use of contiguous block allocation
for embedded systems. It also demonstrates the con-
venience of using standard file system API calls to
manipulate the files.

N (10) audio channels are multiplexed in the time
domain. A DSP front-end digitizes the input into dis-
crete 512-byte packets that are then written to a con-
tiguous section of the disk. This section of the disk is
assigned to N files that are interleaved in a cyclic pat-
tern, so each block is assigned to a separate file rep-
resenting the channel. Every Nth block is owned by a
file assigned to channel N.

Once the data is collected, it must be demultiplexed
and each channel must be streamed through an
audio player. Due to the high data rates involved, it is
not possible to perform disk seeks during the record or
the playback sessions; the multiplexed data must be
stored contiguously while it is collected and then
demultiplexed to contiguous per-channel audio
streams so the sound files can be played back.
• Both the record and playback sessions require real-

time response. During the transition from a record to
playback session, you have time to move the data
around.

• The resulting sound files must be accessible by a
sound editor application running under Windows
95.

Programmed IO is used to demonstrate the technique.
In your application, the record and playback routines
could use DMA to transfer the data to and from the
contiguous regions of the disk, and the file system
code could be executed by the DSP front-end.

To accomplish these goals simultaneously, we use an
embedded realtime file system, the ERTFS Version 1.0
product, from EBS, Inc. (URL: www.etcbin.com). This
embedded file system is Win95 compatible, has con-
tiguous file support, and has direct block manipulation
routines. Many embedded applications or embedded
kernels have support for contiguous files and may

have routines to directly manipulate disk blocks. But
ERTFS has this plus Win95 FAT32 support, and the
functionality can be added to either a stand-alone
application or to an existing kernel.

Because the data sets are quite large and our block-
ing requirements are small (512 bytes per block), this
application uses a large 2.1 Gigabyte hard disk for-
matted with the FAT32 file system. This format will pro-
vide a cluster size (minimum allocation unit) of one
block per cluster.

THE FAT32 FILE SYSTEM

The FAT16 file system, the file system of the MS DOS,
Windows 3.1, and most versions of Windows 95 oper-
ating systems, is 21 years old. It was first developed for
floppy disks. The FAT (file allocation table) has been
modified over the years to accommodate ever larger
disks. It has finally reached its limit with the 2 Gigabyte
drives.

The FAT32 file system is an enhancement of the
FAT16 file system and now supports larger hard drives
with improved disk space efficiency. What makes the
space usage more efficient is the smaller clusters
used on the larger disks. For disks up to 8 Gigabytes,
the default cluster size is a modest 4 KB compared to
the 32 KB cluster size for a 2 Gigabyte drive using the
FAT16 format. For our application, we formatted a disk
with ERTFS to specify a 512-byte cluster size.

There are some drawbacks to the use of the FAT32 for-
mat. The Windows NT operating system does not use
the format, and converters are not available for
Windows NT 3.5 and 4.0 systems. Windows NT 5.0 sys-
tems are supposed to have a conversion utility to con-
vert from FAT32 format to NTFS (the native NT file sys-
tem).

It was been pointed out by an embedded kernel devel-
oper the FAT32 format may have some performance
problems in certain applications:
• With FAT32, twice as much data has to be read on

FAT searches.

• With long file names, 3 to 5 times as much data has
to be read on directory searches.

• The memory requirement (e.g. buffers for expanded
Unicode filenames) is higher for a FAT32 file system.
Code size will typically also be higher.

Real-Time Magazine 98-3

By Edward F. Steinfeld,
Industry Marketing Consultant,

Automata International.

FAT32 is made for data-intensive
embedded applications

Writing multiple streams of high-speed data to a disk can be a frustrating programming experience.
Some potential loss of data due to head seek times can be reduced using double buffering and pipes.
But that makes for complex programming and reliance on either a high-level kernel or your expertise to
handle the data. An easier method is to use the Windows 95 FAT32 file system along with a contiguous
file system to write these high-speed streams of data to a disk.

FAT32 is made for data-intensive
embedded applications

T

FAT32

FAT32

92

• Small cluster sizes are a performance disadvantage
for large files, as they require more FAT accesses.

Another drawback: some compatibility problems with
existing Application Programming Interfaces (APIs) and
older MS DOS utilities. The cluster values for FAT32
now use 4 bytes as compared to 2 bytes in the FAT16
system. The Win32 APIs are not affected, and all disk
utilities bundled with Windows 95 have been updated.

It is this 4-byte cluster value that makes the FAT32 for-
mat so relevant to high-speed contiguous files. You
can define clusters that are small enough to be equal
in size to the blocks of data being collected and writ-
ten to the disk. The older FAT16 cluster size value
could not accommodate a large number of clusters, so
it had to use ever larger cluster sizes as the disk size
increased. This kept the value of the cluster size small
enough to fit into the 2 bytes provided for the value.

For a more technical description of the FAT32 file sys-
tem, see www.microsoft.com/windows/pr/fat32.htm.

CONTIGUOUS FILES

The normal disk structure has data written in the first
available space. When that space is filled, a link is cre-
ated to the next available disk space. When writing to
the disk, the disk head is constantly going back and
forth between the file allocation table (FAT) and the
area on the disk where the data is being written. If a
program could know before hand that the entire file
could be written in a contiguous portion of the disk
and if it knows the address of this space, the program
could issue direct read and write commands. This is
what the ERTFS, LynxOS, and SMX products provide to
the developer. (Note: The ERTFS and SMX products
are MS-DOS compatible and the LynxOS product is

POSIX compliant.)

A contiguous file is a section of the disk consisting of
contiguous or sequential physical blocks which, after
being allocated, are treated as a high-performance raw
device. A contiguous file usually does not use the nor-
mal buffered file system but is accessed in block units
of the file system.

The FAT32 compatible format in our application uses
a 512-byte cluster size, which means all accesses to
contiguous files are made in units of 512 bytes. Using
this cluster size, we are able to interleave our 10 chan-
nels in a contiguous region of the disk. Because the
DSP is collecting data in 512-byte blocks per channel,
we are as efficient as possible in our disk writes of one
cluster (512 bytes) per write.

Real-Time Magazine 98-3

ERTFS API CALLS DESCRIPTION

po_open Open/create a file

po_close Close a file

po_read Read from a file

po_write Write to a file

pc_unlink Delete a file

pc_get_free_list Get a disks free map

po_extend_file
Extend a file specifying
block allocation

pc_get_file_extents
Retrieve the block map of
a file

pc_raw_write Direct block write to disk

pc_raw_read Direct block read from disk

Table 1 ERTFS API calls used in this application

Figure 1 N (10) channel multistreaming audio application

FAT32

93

The ERTFS file system has functions to read and write
up to 128 blocks directly to and from a disk. With these
functions, you specify the starting block number and
the number of blocks to transfer.

Although DOS APIs may happen to create contiguous
files, there is no way to specifically request a contigu-
ous file without contiguous or sequential file support.
Any contiguous file created, however, can be read by
DOS-compatible utilities.

PROGRAM STEPS

The algorithm implemented for this data-streaming
application requires the following seven steps.

Step 1. Allocate a contiguous segment of the disk to
store the incoming data stream.

Step 2. Interleave the blocks in the contiguous seg-
ment, so that every Nth (10th) block is associated with
the same file. N is the number of input channels; in this
case, 10.

Step 3. For the output files, allocate another contiguous
segment of the disk to store a copy of the input stream
in N (10) contiguous files (one for each channel).

Step 4. Collect the data and store interleaved in the
contiguous segment of the disk created for the input
data.

Step 5. Demultiplex the data by copying the data from
the interleaved input file to the contiguous output files.

Step 6. Play back each channel.

Step 7. Clean up the disk.

The listings of the routines to execute this program
have listing numbers that match the step numbers.
The main routine and the definitions are in Listing 0.

Step 1. Allocate contiguous disk
space

In Listing 1 the routine scans the disk drive for enough
free space to run the application. If it finds the space,
the size will be returned in the free_list array. If it does
not find enough space, it will analyze the disk and print
the free map for informational purposes.

Two contiguous regions on the disk are needed to
hold the data collection of size (NUM_CHANNELS *
NUM_BLOCKSPER) blocks - 512,000 blocks. The rou-
tine will first try to allocate all the data from one region.
If that will not work, it will try to allocate the data in two
segments.

All of the routines return 0 on success and -1 on fail-
ure.

Step 2. Create the interleaved files
In Listing 2, 10 interleaved files over a single contigu-
ous segment of the disk are created. (Actually it could
be N number of channels and files where N is any
number.) This routine will create space for 10 inter-
leaved files, each containing 1000 blocks of data. The
data will be laid out so every Nth block belongs to a
specific input channel (Figure 2). CH0 is a member of
INPUT_FILE_1; CH1 is a member of INPUT_FILE_2
and so on.

Real-Time Magazine 98-3

int find_session_free_space()

{

int freelist_size;

int i;

/* Call ertfs and ask for a list of
free segments. The first argument is the
drive number, the second is the size of
the free_list array the third is the
free list and the fourth is the minimum
size of contiguous regions to report */

Listing 1 Call the ERTFS routines and find free disk space.

/* Try to get all of the space in one
chunk */

freelist_size =

pc_get_free_list(DRIVENUMBER,
FREELISTSIZE, &free_list[0],(2 *
(NUM_BLOCKSPER*NUM_CHANNELS)));

if (freelist_size >= 1)

return(0); /* Got it */

/* Couldn't get it in one chunk try it
in two */

freelist_size =

pc_get_free_list(DRIVENUMBER,
FREELISTSIZE, &free_list[0],
(NUM_BLOCKSPER*NUM_CHANNELS));

if (freelist_size >= 2)

return(0); /* Got it now */

/* There isn't enough contiguous space
to do what we want */

/* Just dump the free list to the con -
sole and return failure */

/* Note threshold of one will return all
free regions */

freelist_size =

pc_get_free_list(DRIVENUMBER,
FREELISTSIZE, &free_list[0], 1);

printf("Free List\n");

printf("CLUSTER LENGTH\n");

for (i = 0; i < freelist_size; i++)

{

printf("%8ul %8ul\n",
free_list[i].cluster,

free_list[i].nclusters);

}

printf("Storage allocation failed\n");

return(-1);

}

int create_input_data_files()

{

int n, j;

PCFD fd;

long cluster;

FAT32

94

Step 3. Allocate space for 10 output
files

In Listing 3, the routine creates the N (10) contiguous
files to hold data that will be streamed through an
audio playback system. These files are used by the
either the embedded system or copied to the
Windows 95 application system. All blocks within a file
should be contiguous to minimize disk head move-
ment and reduce disk access times. This is not nec-
essary for the application to function, but it makes it
simpler to implement and also eliminates fragmenta-
tion and ensures the output data will be streamed
smoothly (no breaks while waiting for disk head move-
ment).

Real-Time Magazine 98-3

Listing 2 Creates N (ten) interleaved files
over a contiguous segment of the disk

for (n = 0; n < NUM_CHANNELS; n++)

{

/* Open channel n */

fd = po_open(infile_names[n],

PO_BINARY|PO_RDWR|PO_CREAT,
PS_IWRITE|PS_IREAD);

if (fd < 0)

{

printf("File creation error \n");

return(-1);

}

/* The start cluster offset for the
files is 0,1,2,3,.. for each of the
channels 0,1,2,.. respectively */

cluster = free_list[0].cluster + n;

/* Now allocate one block every
N'th block for the data channel */

for (j=0; j < NUM_BLOCKSPER; j++)

{

if (po_extend_file(fd, 512,
cluster, PC_FIXED_FIT,

FALSE) < 0)

{

printf("File extend error \n");

po_close(fd);

return(-1);

}

cluster += NUM_CHANNELS;

}

/* Close this file and go do anoth
er */

po_close(fd);

}

/* Okay. We have created 10 files
of 512000 bytes each. The blocks
are laid out CHAN0|CHAN1|CHAN2
|CHAN3....|CHAN0.. */

return(0);

}

int create_output_data_channels()

{

int n;

PCFD fd;

long cluster;

long file_size;

/* Get the cluster in the contigu
ous region If we get here we know
there is enough free blocks */

if (free_list[0].nclusters >=
(2*NUM_BLOCKSPER*NUM_CHANNELS))

{

/* If we were able to allocate both
the input and output files in one
segment we use the second half of
the segment for the allocation. */

cluster = free_list[0].cluster +

(NUM_BLOCKSPER*NUM_CHANNELS);

}

else

{

/* Otherwise use the beginning of
the second segment */

cluster = free_list[1].cluster;

}

/* The size in bytes of each of the
data files */

file_size = (long)NUM_BLOCKSPER;

file_size = (long) (file_size * 512);

for (n = 0; n < NUM_CHANNELS; n++)

{

/* Open channel n */

fd = po_open(outfile_names[n],

PO_BINARY|PO_RDWR|PO_CREAT,
PS_IWRITE|PS_IREAD);

if (fd < 0)

{

printf("File creation error \n");

return(-1);

}

/* Now allocate one contiguous
chunk for the output channel

Note The final argument specifies
the device driver to preerase the
data blocks if the device supports
pre-erase */

if (po_extend_file(fd, file_size,
cluster, PC_FIXED_FIT, TRUE) < 0)

{

printf("Outut File extend error \n");

po_close(fd);

return(-1);

}

/* The next file will be offset by
NUM_BLOCKSPER */

cluster += NUM_BLOCKSPER;

FAT32

95

Step 4. Collect the input data
In (Listing 4) this routine collects the 10 channels of
multiplexed audio data into N interleaved files.

This routine collects data from a Digital Signal
Processor (DSP) or any other front-end data collection
system and writes the raw blocks to the interleaved
data block region. The DSP system provides 100 block
buffers of data at a time to the upper layers of the appli-
cation software. The buffers are in a ring buffer, so the
application calls the DSP software layer to provide a
buffer. When it returns a buffer, the data is written to
disk and once the write is completed the buffer is
given back to the DSP layer. The DSP system and the
application run asynchronously.

Step 5. Demultiplex the data for out-
put

In Listing 5, the contents of the input data files are
copied to the output files. The data is automatically
demultiplexed, because the input files are interleaved
and the output files are contiguous. This is not a real-
time process, because the disk must seek as it reads
the data blocks from the input files. The interesting
thing about this routine is that a simple file copy using
standard API calls demultiplexes the data into con-
tiguous output files.

Next we finally get to stream the contiguous data to the
audio player. This can be either done by the embed-
ded system or through a Windows 95 application.

Real-Time Magazine 98-3

/* Close this file and go do ano-
ther */

po_close(fd);

}

/* Okay. We have created 10 files
of 512000 contiguous bytes */

return(0);

}

Listing 3 Routine to create output files.

int collect_data()

{

PCFD fd;

long blockno;

char *pdata;

FILESEGINFO fileinfo;

int n_samples;

/* Open channel 0 and get the block
number of the first block in the
file. This is the beginning of the
contiguous region we allocated */

fd = po_open(infile_names[0],
PO_BINARY|PO_RDWR,0);

if (fd < 0)

{

printf("File open error\n");

return(-1);

}

/* Ask for a list of block extents
that make up the file.

we only ask for a list of one since
we only need the first block. The
raw_io flag is false since we will
include partition mapping when we
write the file */

if (pc_get_file_extents(fd, 1,
&fileinfo, FALSE) < 0)

{

po_close(fd);

printf("Error getting file
extents\n");

return(-1);

}

/* Close the file.. we don't need
it any more. */

po_close(fd);

blockno = fileinfo.block;

/* Here it is */

/* How many samples to collect
(total number of blocks/SAMPLESIZE)
*/

n_samples =

(NUM_CHANNELS*NUM_BLOCKSPER/SAMPLESIZE);

/* Tell the DSP to Collect n_sam-
ples of SAMPLESIZE each */

dsp_start(n_samples, SAMPLESIZE);

/* Now loop. wait for the samples
and write them to disk */

while (n_samples--)

{

pdata = dsp_get_sample();
/* Wait for a sample */

/* Write SAMPLESIZE blocks from
pdata to the block at blockno, the
raw_io argument is false because we
want partition mapping */

if (pc_raw_write(DRIVENUMBER, pdata,
blockno, SAMPLESIZE, FALSE) < 0)

{

printf("Error writing to disk\n");

return(-1);

}

blockno += SAMPLESIZE;
/* We just wrote SAMPLESIZE blocks.

So increment our block pointer. */

}

return(1);

}

Listing 4 Collect the audio data.

/* Demultiplex the input data so it may
be streamed to the audio player */

int copy_input_to_output()

{

int n,i;

FAT32

96

Step 6. Play back each channel
In Listing 6, the routine assumes the embedded sys-
tem is used to play back the audio streams. It reads
blocks from output files that are contiguous and com-
mits the blocks to the DSP system to be played as
audio.

Real-Time Magazine 98-3

PCFD in_fd;

PCFD out_fd;

for (n = 0; n < NUM_CHANNELS; n++)

{

/* Open channel n */

in_fd = po_open(infile_names[n],
PO_BINARY|PO_RDONLY,0);

out_fd = po_open(outfile_names[n],
PO_BINARY|PO_WRONLY,0);

if ((in_fd < 0) || (out_fd < 0))

{

if (in_fd >= 0)

po_close(in_fd);

if (out_fd >= 0)

po_close(out_fd);

printf("File open error \n");

return(-1);

}

/* Now read from the input and
write to the output */

/* Work 20 blocks at a time
since we have a 10240 byte
buffer */

for (i = 0; i < NUM_BLOCKSPER;
i += 20)

{

if (!((po_read(in_fd, big_buffer,
10240) == 10240) &&

(po_write(in_fd, big_buffer,
10240) == 10240)

))

{

po_close(in_fd);

po_close(out_fd);

printf("File copy error \n");

return(-1);

}

}

/* close the files and loop back
for the next pair */

po_close(in_fd);

po_close(out_fd);

}

/* Okay we've copied all of our
files. We are done */

return(1);

}

Listing 5 Demultiplex (copy) the data into
separate contiguous files.

int copy_output_to_audio()

/* Play the data on the output device */

{

PCFD fd;

long blockno;

char *pdata;

FILESEGINFO fileinfo;

int i;

int channel;

for (channel = 0; channel <
NUM_CHANNELS; channel++)

{

/* Open the channel */

fd = po_open(outfile_names[channel],

PO_BINARY|PO_RDONLY,0);

if (fd < 0)

{

po_close(fd);

printf("File open error \n");

return(-1);

}

/* Get the starting block of the
file. We know it is contiguous */

if (pc_get_file_extents(fd, 1,
&fileinfo, FALSE) < 0)

{

po_close(fd);

printf("Error getting file
extents\n");

return(-1);

}

else

blockno = fileinfo.block;
/* Here it is */

/* Close the file.. we don't need
it any more. */

po_close(fd);

/* Now play all data in one channel */

/* How many samples to play is
(total number of blocks/
SAMPLESIZE) */

for (i = 0; i < (NUM_BLOCKSPER/SAMPLESIZE);
i++)

{

/* Call the DSP for a place to
put the data */

pdata = dsp_get_play_buffer(SAMPLESIZE);

/* Read the contiguous blocks
from the disk */

if (pc_raw_read(DRIVENUMBER,
pdata, blockno, SAMPLESIZE,
FALSE) < 0)

{

printf("Error reading
output sample\n");

return(-1);

FAT32

98

Step 7. Clean up the disk
The routine in Listing 7 deletes all the input files and
output files to release the contiguous space. This rou-
tine calls pc_unlink() for each file that may have been
created. If the algorithm ran to completion, it will delete
every file. If it did not run to completion but left some
files on the disk, it will delete only those files and the
unlink call will fail on the files that we did not create.
This will not cause any harm.

Main Program
The main session and the program definitions are in
Listing 0. The main program makes sure there is
enough contiguous disk space to collect the multi-
plexed data in a contiguous section and to store the
demultiplexed data files in contiguous sections. Then
it creates NUMCHANNEL interleaved files so the mul-
tiplexed input stream can be collected to contiguous
sectors and later demultiplexed. After it collects the
data, it demultiplexes the data by copying the data on
a per-channel basis from the interleaved input files to
the contiguous output files. Then it plays back each
channel and deletes all the files.

FAT32 and Embedded Files Work Together

Using the Windows 95 FAT32 file system with its small-
er cluster sizes, that can be sized to your incoming

data stream, and your embedded application to allo-
cate contiguous files and to read and write directly to
disk blocks can make for a fast data collection system
for continuous data streams. The reduced head seek
times made possible by using contiguous files mean
you will not lose incoming data. The ability then to
copy the input file into any number of contiguous out-
put files means the output device can stream the data
without breaks due to disk head movement.

The ERTFS product has a unique function that may be
required when the length of the data stream is not
known. If the file size you preallocated was not suffi-
cient to contain the data stream, the ERTFS product
has a function to extend the contiguous file. The
ERTFS API provides for calls to get the first available
contiguous chain of clusters of sufficient size to con-
tain the extension (fastest method), the chain of clus-
ters that allow for the best fit, or the longest chain of
available clusters. The extension may not be contigu-
ous with the first allocated space but might be linked
like non-contiguous files.

Some embedded kernels have contiguous (sequen-
tial) file capability. The ERTFS file system from EBS, Inc.
can be used either with kernels that do not possess
this feature, or it can be incorporated easily into
embedded products that do not contain a file system.

Real-Time Magazine 98-3

#define DRIVENUMBER 0 /* Assume drive number 0. We only have one drive */

#define FREELISTSIZE 200 /* Assume a maximum of 200 discontiguous free segments */

#define NUM_CHANNELS 10 /* We will be collecting 10 audio channels */

#define NUM_BLOCKSPER 1000 /* 512000 bytes per channel is collected */

#define SAMPLESIZE 100 /* 100 blocks per dsp sample */

/* Global array to hold the free segment list */

FREELISTINFO free_list[FREELISTSIZE];

/* Buffer for moving chunks of data around */

unsigned char big_buffer[10240];

char *infile_names[NUM_CHANNELS] = {

"input_file_0.snd", "input_file_1.snd",

"input_file_2.snd", "input_file_3.snd",

"input_file_4.snd", "input_file_5.snd",

"input_file_6.snd", "input_file_7.snd",

"input_file_8.snd", "input_file_9.snd"};
CONTINUED ON PAGE 99

Listing 0. The Main Session

}

dsp_play_play_buffer(pdata);
/* Tell DSP subsystem it is

loaded */

blockno += SAMPLESIZE;
/* Increment our block pointer. */

}

}

return(0);

}

Listing 6 Play the data back.

void delete_all_files()

{

int n;

for (n = 0; n < NUM_CHANNELS; n++)

{

pc_unlink(infile_names[n]);

pc_unlink(outfile_names[n]);

}

}

Listing 7 Delete all the files so you can do it all over
again.

FAT32

99Real-Time Magazine 98-3

char *outfile_names[NUM_CHANNELS] = {

"output_file_0.snd", "output_file_1.snd",

"output_file_2.snd", "output_file_3.snd",

"output_file_4.snd", "output_file_5.snd",

"output_file_6.snd", "output_file_7.snd",

"output_file_8.snd", "output_file_9.snd"};

/* hypothetical DSP subsystem */

extern void dsp_start(int n_samples, int samplesize);

extern char *dsp_get_sample();

extern char * dsp_get_play_buffer(int samplesize);

extern void dsp_play_play_buffer(char *pdata);

/* Capture N channels of multiplexed audio and play it.

Returns 0 on success and -1 on failure. */

int record_and_play()

{

int return_value;

/* Make sure we have space and load the coordinates into the global array
free_list */

if (find_session_free_space() == -1)

{

printf("Not enough contiuous disk space for session\n");

return(-1);

}

return_value = -1; /* If we break out before completion report error */

/* Create N interleaved files for incoming multiplexed data

stream */

if (create_input_data_files() == -1)

printf("Failed to create input files\n");

/* Create N contiguous files for outgoing audio streams */

else if (create_output_data_channels() == -1)

printf("Failed to create output files\n");

/* Collect mutiplexed data to the interleaved files */

else if (collect_data() == -1)

printf("Failed while collecting data\n");

/* Demultiplex the data by copying it from the interleaved files to the
contiguous files */

else if (copy_input_to_output() == -1)

printf("Failed copying input to contiguous output files\n");

/* Stream the demutiplexed data from the contiguous files to the

audio system for playback */

else if (copy_output_to_audio() == -1)

printf("Failed while playing back audio\n");

/* If none of the subsystems failed report success */

else

return_value = 0;

/* Clean up. */

delete_all_files();

/* And leave */

return(return_value);

}

Listing 0. The Main Session

CONTINUED FROM PAGE 98

FAT32

100

SOURCES

ERTFS

EBS, Inc.

Box 873

Groton, MA 01450-0873

(978) 448-9340

Fax: (978) 448-6376

http://www.etcbin.com

FAT32

Microsoft Corp.

One Microsoft Way

Redmond, WA 98052

(206) 882-8080

Fax: (206) 936-7329

http://www.microsoft.com/windows/pr/fat32.htm

LynxOS

Lynx Real-Time Systems, Inc.

239 Samartian Drive

San Jose, CA 95124

(498) 879-3900

Fax: (408) 879-3920

http://www.lynx.com

SMX

Micro Digital, Inc.

12842 Valley View Street, #208

Garden grove, CA 92845

(714) 373-6862

Fax: (714) 891-2363

http://www.smxinfo.com

Ed has more than 25 years experience in realtime
and embedded computing. He began as a pro-
grammer writing code to test hybrid circuit boards.
He has marketed embedded and realtime products
to OEMs and resellers for Digital Equipment
Corporation, VenturCom, Inc., and Phar Lap
Software. He has international experience including
working in Hong Kong as the Far East Channels
Manager and was responsible for international OEM
sales in Europe and the Pacific Rim. He now pro-
vides marketing services to these same markets.

Real-Time Magazine 98-3

EBSCO Subscription Services
P.O. Box 1943, Birmingham,
Alabama 35201-1943,
USA
Tel: 1.205.991.6600
Fax: 1.205.991.1479

Standaard Boekhandel
Industriepark Noord 28 A
9100 St.Niklaas,
Belgium
Tel: 32-3-760.32.11
Fax: 32-2-777.92.63

SWETS Subscription Service
P.B. Box 830,
2160 SZ Lisse,
Netherlands
Tel: 31.25.213.51.11
Fax: 31.25.211.58.88

Dawson France
B.P. 57,91871
Palaiseau Cedex, France
Tel: 33.1.69.10.47.00
Fax: 33.1.64.54.83.26

Lavoisier Abonnements
14 rue de Provigny
94236 Cachan Cedex, France
Tel: 33.1.47.40.67.00
Fax: 33.1.47.40.67.02

READMORE
22 Cortlandt Street
New-York 10007-3194
USA
Tel: 1.212.349.5540
Fax: 1.212.233.0746

SUBSCRIPTION SERVICE

REAL-TIME CONSULT, RUE DE LA JUSTICE 23, 1070 BRUSSELS,
TEL: 32.2.520.55.77, FAX: 32.2.520.83.09, EMAIL: INFO@REALTIME-INFO.BE

BOOKSTORES

