
EE445M/EE380L.6 Lecture 12.1

Jonathan W. Valvano

How to Use MMC/SDC
Copied from : http://elm-chan.org/docs/mmc/mmc_e.html
References http://www.sdcard.org/home
http://users.ece.utexas.edu/~valvano/EE345M/SD_Physical_Layer_Spec.pdf

Introduction
 The Secure Digital Memory Card (Figure 1) is the de facto standard memory card
for mobile equipments. The SDC was developed as upward-compatible to Multi Media
Card (also in Figure 1) so that the SDC-compliant equipments can also use an MMC with
an appropriate adapter. There are also reduced size versions, such as RS-MMC, miniSD
and microSD, with same functionality. The MMC/SDC has a microcontroller in it, the
flash memory controls (erasing, reading, writing and error controls) are completed inside
of the memory card. The data is transferred between the memory card and the host
controller as data blocks in unit of 512 bytes, so that it can be seen like a generic hard
disk drive from view point of upper level layers. The file system for the memory card is
FAT12/16 with FDISK partitioning rule. The FAT32 is defined for only high capacity
(>= 4G) cards.

Figure 1. Secure digital card and a multimedia card.

SDC-Connector
 Figure 2 shows the SDC for Lab 5. The SDC has nine contact pads. The three of
the contacts are assigned for power supply so that the number of effective signals are six.
Therefore the data transfer between the host and the card is done via a synchronous serial
interface. The working supply voltage range is indicated in a special function register and
it should be read and confirmed the operating voltage range. However, the supply voltage
can be fixed to a proper value because the SDC works at supply voltage of 2.7 to 3.6
volts. The current consumption can reach up to 15 mA in standby and 50 mA during
operation. Combo cards can draw up to 100 mA during operation.

EE445M/EE380L.6 Lecture 12.2

Jonathan W. Valvano

Figure 2. SDC and connector pin-out.

Figure 3a shows the interface logic between the STM32F103 and the SDC. The IRQ line,
pin 8, is not connected. PA4 is connected to pin 1 which is card select. PA8 is used to
detect if a card is inserted into the SD slot.

EE445M/EE380L.6 Lecture 12.3

Jonathan W. Valvano

Figure 3a. SDC interface to STM32F103.

Figure 3b shows the interface logic between the LM3S8962 and the SDC. The IRQ line,
pin 8, is not connected to the microcontroller, and pulled high. Pin 1 is also pulled high,
which is card select. The four SPI signals are connected to the microcontroller.

Figure 3b. SDC interface to LM3S8962.

The following shows the interface logic between the TM4C123 and the SDC. The IRQ
line, pin 8, is not connected to the microcontroller, and pulled high. Pin 1 is also pulled
high, which is card select. The four SPI signals are connected to the microcontroller.

// Backlight (pin 10) connected to +3.3 V

EE445M/EE380L.6 Lecture 12.4

Jonathan W. Valvano

// MISO (pin 9)) connected to PA4 (SSI0Rx) <- new
// SCK (pin 8) connected to PA2 (SSI0Clk)
// MOSI (pin 7) connected to PA5 (SSI0Tx)
// TFT_CS (pin 6) connected to PA3 (SSI0Fss)
// CARD_CS (pin 5) connected to a GPIO <- new
// Data/Command (pin 4) connected to PA6 (GPIO)
// RESET (pin 3) connected to PA7 (GPIO)
// VCC (pin 2) connected to +3.3 V
// Gnd (pin 1) connected to ground
Figure 3c. SDC interface to TM4C123.

SPI Mode Interface of the SD card

SPI (Serial Peripheral Interface) is one of the on-board inter-IC communication
interfaces. It was introduced by Motorola, Inc. (Freescale Semiconductor). Because of its
simplicity and generality, it is incorporated in many peripheral ICs similar to the Philips
IIC-bus. The number of signals of SPI, three or four wires, is larger than IIC's two wires,
but the transfer rate can rise up to 20 Mbps or higher depends on device's ability (5 - 50
times faster than IIC). Therefore, it is preferable for applications, such as ADC, DAC, or
communication, which require high data transfer rate. The basic structure of the SPI is
shown in Figure 4. The master IC and the slave IC are tied with three signal lines, SCLK
(Serial Clock), MISO (Master-In Slave-Out) and MOSI (Master-Out Slave-In), and
contents of both 8-bit shift registers are exchanged with the shift clock driven by master
IC. Additionally an SS (Slave Select) signal can be used to synchronize the start of packet
or byte boundary, and multi-slave configurations. Most slave ICs assign different pin
names, such as DI, DO and CS, to the SPI interface. For one-way transfer device, such as
DAC and single channel ADC, only one data line may be used. The data bits are shifted
MSB first.

When interfacing multiple slaves to a single master, the slave ICs can be attached
in parallel and separate CS signals from master IC are connected to each slave ICs. The
data output of slave IC that selected by which CS signal is enabled and deselected
devices are disconnected from MISO line.

EE445M/EE380L.6 Lecture 12.5

Jonathan W. Valvano

SS

SClk

MOSI

MISO

SPI
master

I/O device
slave

STM32

PA4

PA5

PA7

PA6

Figure 4. SPI block diagrams.

In SPI, data shift and data latch are done opposite clock edges respectively. There
is an advantage that when shift and latch operations are separated, critical timing between
two operations can be avoided. Therefore, timing consideration for IC design and board
design can be relieved. But on the other hand there are four operation modes due to
combination of clock polarity and clock phase, master IC must configure its SPI interface
as an SPI mode that slave IC required. The SD card uses CPOL=0, CPHA=0 mode as
shown in Figure 5.

CPOL=0, CPHA=0

SCLK

7 06 5 4 3 2 1

7 06 5 4 3 2 1MO(Master) or SO(Slave)

MI(Master) or SI(Slave)

Figure 5. SPI CPOL= 0, SPHA=0 mode.

There are three possible modes to interface the SD card, as shown in Table 1. The
communication protocol for the SPI mode is simple compared to the native modes. The
MMC/SDC can be attached to the most microcontrollers via a generic SPI interface or
GPIO ports. Therefore the SPI mode is suitable for low cost embedded applications.

EE445M/EE380L.6 Lecture 12.6

Jonathan W. Valvano

Especially, there is no reason to attempt to use native mode with a cheap microcontroller
that has no native MMC/SDC interface. For SDC, the 'SPI mode 0' is defined for its SPI
mode. Thus the SPI Mode 0 (CPHA=0, CPOL=0) is the proper setting for MMC/SDC
interface, but SPI mode 3 also works as well in most cases.

Table 1. Three SD interfacing modes.

Command and Response

In SPI mode, the data direction on the signal line is fixed and the data is
transferred in byte oriented serial communication. The command frame from host to card
is a fixed length (six bytes) packet that shown below. When a command frame is
transmitted to the card, a response to the command (R1, R2 or R3) will able to be read
from the card. Because data transfer is driven by serial clock generated by host, the host
must continue to read bytes, send a 0xFF and get the received data, until receive any valid
response. The command response time (NCR) is 0 to 8 bytes for SDC, 1 to 8 bytes for
MMC. The CS signal must be held low during a transaction (command, response and
data transfer if exist). The CRC field is optional in SPI mode, but it is required as a bit
field to compose a command frame. The DI signal must be kept high during read transfer.

Figure 6. SD command frame.

SPI Command Set

Each command is expressed in abbreviation like

GO_IDLE_STATE or CMD<n>

where <n> is the number of the command index and the value can be 0 to 63. Table 2
describes only commands that to be usually used for generic read/write and card

EE445M/EE380L.6 Lecture 12.7

Jonathan W. Valvano

initialization. For details on all commands, please refer to spec sheets from MMCA and
SDCA.

Command
Index

Argument Response Data Abbreviation Description

CMD0 None(0) R1 No GO_IDLE_STATE Software reset.

CMD1 None(0) R1 No SEND_OP_COND
Initiate initialization
process.

ACMD41(*1) *2 R1 No APP_SEND_OP_COND
For only SDC.
Initiate initialization
process.

CMD8 *3 R7 No SEND_IF_COND
For only SDC V2.
Check voltage
range.

CMD9 None(0) R1 Yes SEND_CSD Read CSD register.

CMD10 None(0) R1 Yes SEND_CID Read CID register.

CMD12 None(0) R1b No STOP_TRANSMISSION Stop to read data.

CMD16
Block
length[31:0]

R1 No SET_BLOCKLEN
Change R/W block
size.

CMD17 Address[31:0] R1 Yes READ_SINGLE_BLOCK Read a block.

CMD18 Address[31:0] R1 Yes READ_MULTIPLE_BLOCK
Read multiple
blocks.

CMD23
Number of
blocks[15:0]

R1 No SET_BLOCK_COUNT

For only MMC.
Define number of
blocks to transfer
with next multi-
block read/write
command.

ACMD23(*1)
Number of
blocks[22:0]

R1 No SET_WR_BLOCK_ERASE_COUNT

For only SDC.
Define number of
blocks to pre-erase
with next multi-
block write
command.

CMD24 Address[31:0] R1 Yes WRITE_BLOCK Write a block.

CMD25 Address[31:0] R1 Yes WRITE_MULTIPLE_BLOCK
Write multiple
blocks.

CMD55(*1) None(0) R1 No APP_CMD
Leading command
of ACMD<n>
command.

CMD58 None(0) R3 No READ_OCR Read OCR.

*1:ACMD<n> means a command sequence of CMD55-CMD<n>.
*2: Rsv(0)[31], HCS[30], Rsv(0)[29:0]
*3: Rsv(0)[31:12], Supply Voltage(1)[11:8], Check Pattern(0xAA)[7:0]
Table 2. SD commands.

EE445M/EE380L.6 Lecture 12.8

Jonathan W. Valvano

SPI Response
There are three command response formats, R1, R2 and R3, depending on the

command index. A byte of response R1 is returned for most commands. The bit field of
R1 response is shown in Figure 7, the value 0x00 means successful. When any error
occurred, corresponding status bit in the response will be set. The R3 response (R1 and
trailing 32-bit OCR) is for only CMD58.

Figure 7. SD response frames.

Some commands take a time longer than NCR and it responds R1b. It is an R1 response
followed by busy flag (DO is held low as long as internal process is in progress). The
host controller should wait for end of the process until 0xFF is received.

Initialization Procedure for SPI Mode

After power on reset, MMC/SDC enters its native operating mode. To put it SPI
mode, following procedure must be performed.

1) Power ON (Insertion)
After supply voltage reached 2.2 volts, wait for a millisecond at least. Set DI and CS high
and apply more than 74 clock pulses to SCLK and the card will go ready to accept native
commands.

EE445M/EE380L.6 Lecture 12.9

Jonathan W. Valvano

2) Software Reset
Set SPI clock rate between 100 kHz and 400 kHz and then send a CMD0 with CS low to
reset the card. The card samples CS signal when a CMD0 is received. If the CS signal is
low, the card enters SPI mode. Since the CMD0 must be sent as a native command, the
CRC field must have a valid value. When once the card enters SPI mode, the CRC
feature is disabled and the CRC is not checked, so that command transmission routine
can be written with the hardcoded CRC value that valid for only CMD0 and CMD8.
When the CMD0 is accepted, the card will enter idle state and respond R1 response with
In Idle State bit (0x01). The CRC feature can also be switched with CMD59.

3) Initialization
In idle state, the card accepts only CMD0, CMD1, ACMD41 and CMD58. Any other
commands will be rejected. In this time, read OCR with CMD58, check working voltage
range indicated by the OCR. In case of the system supply voltage is out of working
voltage range, the card must be rejected. Note that all cards work at voltage range of 2.7
to 3.6 volts at least. The card initiates initialization when a CMD1 is received. To poll
end of the initialization, the host controller must send CMD1 and check the response until
end of the initialization. When the card is initialized successfully, In Idle State bit in the
R1 response is cleared (R1 resp changes 0x01 to 0x00). The initialization process can
take hundreds of milliseconds (large cards tend to longer), so that this is a consideration
to determine the time out value. After the In Idle State bit cleared, generic read/write
commands will able to be accepted. Because ACMD41 instead of CMD1 is recommended
for SDC, trying ACMD41 first and retry with CMD1 if rejected, is ideal to support both
type of the cards. The SPI clock rate should be changed to fast as possible to optimize the
read/write performance. The TRAN_SPEED field in the CSD indicates the maximum
clock rate of the card. The maximum clock rate is 20MHz for MMC, 25MHz for SDC in
most case. Note that the clock rate will able to be fixed to 20/25MHz in SPI mode
because there is no open-drain condition that restricts the clock rate. The initial block
length can be set larger than 512 on 2GB card, so that the block size should be re-
initialized with CMD16 if needed.

How to support SDC Ver2 and high capacity cards

After the card enters idle state with a CMD0, send a CMD8 with argument of
0x000001AA and correct CRC prior to initialization process. When the CMD8 is rejected
with an illegal command error (0x05), the card is SDC V1 or MMC. When the CMD8 is
accepted, R7 response (R1(0x01) and trailing 32 bit data) will be returned. The lower 12
bits in the return value 0x1AA means that the card is SDC V2 and it can work at voltage
range of 2.7 to 3.6 volts. If not the case, the card must be rejected. And then initiate
initialization with ACMD41 with HCS (bit 30). After the initialization completed, read
OCR and check CCS (bit 30) in the OCR. When it is set, subsequent data read/write
operations that described below are commanded in block address instead of byte address.
The block size is always fixed to 512 bytes.

Data Transfer
1) Data Packet and Data Response

EE445M/EE380L.6 Lecture 12.10

Jonathan W. Valvano

Figure 8. SD data packets.

In a transaction with data transfer, one or more data blocks will be sent/received after
command response. The data block is transferred as a data packet that consists of Token,
Data Block and CRC. The format of the data packet is shown in Figure 8 and there are
three data tokens. As for Stop Tran token that means end of multiple block write, it is
used in single byte without data block and CRC.

2) Single Block Read

Figure 9. Single block read packet.

It took 300 s to set up for read (logic analyzer resolution too slow for SCLK)

EE445M/EE380L.6 Lecture 12.11

Jonathan W. Valvano

It took 535 s to read one block (logic analyzer resolution too slow for SCLK)

The argument specifies the location to start to read in unit of byte or block. The sector
address specified by upper layer must be scaled properly. When a CMD17 is accepted, a
read operation is initiated and the read data block will be sent to the host. After a valid
data token is detected, the host controller receives following data field and two byte CRC.
The CRC bytes must be flushed even if it is not needed. If any error occurred during the
read operation, an error token will be returned instead of data packet.
3) Multiple Block Read

Figure 10. Multiple block read packet.

The Multiple Block Read command reads multiple blocks in sequence from the specified
address. When number of transfer blocks has not been specified before this command, the
transaction will be initiated as an open-ended multiple block read, the read operation will
continue until stopped with a CMD12. The received byte immediately following CMD12
is a stuff byte, it should be discarded before receive the response of the CMD12.

4) Single Block Write

Figure 11. Single block write packet.

It took 272 s to write one 512 byte block. (logic analyzer resolution too slow for SCLK)

When a write command is accepted, the host controller sends a data packet to the card
after a byte space. The packet format is same as Block Read command. The CRC field

EE445M/EE380L.6 Lecture 12.12

Jonathan W. Valvano

can have any invalid value unless the CRC function is enabled. When a data packet has
been sent, the card responds a Data Response immediately following the data packet. The
data response trails a busy flag to process the write operation. Most cards cannot change
write block size and it is fixed to 512. In principle of the SPI mode, the CS signal must be
asserted during a transaction; however there is an exception to this rule. When the card is
busy, the host controller can de-assert CS to release SPI bus for any other SPI devices.
The card will drive DO signal low again when reselect it during internal process is in
progress. Therefore a preceding busy check (wait ready immediately before command
and data packet) instead of post wait can eliminate waste wait time. In addition the
internal process is initiated a byte after the data response, this means eight clocks are
required to initiate internal write operation. The state of CS signal during the eight clocks
is negligible so that it can done by bus release process described below.

5) Multiple Block Write

Figure 12. Multiple block write packet.

The Multiple Block Write command writes multiple blocks in sequence from the
specified address. When number of transfer blocks has not been specified prior to this
command, the transaction will be initiated as an open-ended multiple block write, the
write operation will continue until it is terminated with a Stop Tran token. The busy flag
will appear on the DO line a byte after the Stop Tran token. As for SDC, the multiple
block write transaction must be terminated with a Stop Tran token independent of the
transfer type, pre-defined or open-ended.

Reading CSD and CID
These are same as Single Block Read except for the data block length. The CSD and CID
are sent to the host as 16 byte data block. For details of the CMD, CID and OCR, refer to
http://users.ece.utexas.edu/~valvano/EE345M/SD_Physical_Layer_Spec.pdf.

Consideration to Bus Floating and Hot Insertion

Any signals that can be floated should be pulled low or high properly via a
resister. This is a generic design rule on MOS devices. Because DI and DO are normally
high, they should be pulled-up. According to SDC/MMC specs, from 50k to 100k ohms
is recommended to the value of pull-up registers. However the clock signal is not
mentioned in the SDC/MMC specs because it is always driven by host controller. When
there is a possibility of floating, it should be pulled to the normal state, low. The
MMC/SDC can hot insertion/removal but some considerations to the host circuit are
needed to avoid an incorrect operation. For example, if the system power supply (Vcc) is
tied to the card socket directly, the Vcc will dip at the instant of contact closed due to a
charge current to the capacitor that built in the card. 'A' in the right image is the scope
view and it shows that occurring a voltage dip of about 600 millivolts. This is a sufficient
level to trigger a brown out detector. 'B' in the right image shows that an inductor is

EE445M/EE380L.6 Lecture 12.13

Jonathan W. Valvano

inserted to block the surge current, the voltage dip is reduced to 200 mV. A low ESR
capacitor, such as OS-CON, can eliminate the voltage dip drastically like shown in 'C'.
However the low ESR capacitor can cause an oscillation of LDO regulator.

Figure 13. Support for hot insertion.

Consideration on Multi-slave Configuration

In the SPI bus, each slave device is selected with separated CS signals, and plural
devices can be attached to an SPI bus. Generic SPI slave device drives/releases its DO
signal by CS signal asynchronously to share an SPI bus. However MMC/SDC
drives/releases DO signal in synchronizing to the SCLK. This means there is a possibility
of bus conflict with MMC/SDC and any other SPI slaves that attached to an SPI bus.
Right image shows the drive/release timing of the MMC/SDC (the DO signal is pulled to
1/2 Vcc to see the bus state). Therefore to make MMC/SDC release DO signal, the
master device must send a byte after CS signal is de-asserted.

EE445M/EE380L.6 Lecture 12.14

Jonathan W. Valvano

Figure 14. Multi-slave configuration.
Optimization of Write Performance (http://elm-chan.org/docs/sm_e.html)

Most MMC/SDC employs NAND Flash Memory as a memory array. The NAND
flash memory is cost effective and it can read/write large data fast, but on the other hand,
there is a disadvantage that rewriting a part of data is inefficient. Generally the flash
memory requires to erase existing data before write a new data, and minimum unit of
erase operation (called erase block) is larger than write block size. The typical NAND
flash memory has a block size of 512/16K bytes for write/erase operation, and recent
monster card employs large block chip (2K/128K). This means that rewriting entire data
in the erase block is done in the card even if write only a sector (512 bytes).

Benchmark

I examined the read/write performance of two SD cards using the available
drivers for the STM32F103. In each case the experiment involved either writing a 512-
byte block The sector number, i, was varied from 0 to 100
 GPIOB->ODR |= 0x1000; // bit 12 on LED
 result = disk_write(0,testBuff,i,1);
 GPIOB->ODR &= ~0x1000; // bit 12 off LED
or by reading a 512-byte block
 GPIOB->ODR |= 0x2000; // bit 13 on LED
 result = disk_read(0,buffer,i,1);
 GPIOB->ODR &= ~0x2000; // bit 13 off LED
The results were:
Kingston 2GB SD Memory Card: SD-M02G

Write block time: 2300 s/block, or about 200 kbytes/sec
Read block time: 532 s/block, or about 1 Mbytes/sec

Kingston 4GB SD Memory Card: SD-K04G
Write block time: 4000 s/block, or about 128 kbytes/sec
Read block time: 665 s/block, or about 0.77 Mbytes/sec

The performance seems to vary considerably. For example, when calling read directly
after a write the speed was dramatically faster.
 result = disk_initialize(0);

EE445M/EE380L.6 Lecture 12.15

Jonathan W. Valvano

 if(result) printf("SD error=%u\n\r",result);
 while(result==0){
 for(i=0;i<100;i++){
 GPIOB->ODR |= 0x1000; // bit 12 on LED
 result = disk_write(0,testBuff,i,1);
 GPIOB->ODR &= ~0x1000; // bit 12 off LED
 for(j=0;j<1000;j++);
 if(result) printf("SD write error=%u block=%u\n\r",result,i);
 GPIOB->ODR |= 0x8000; // bit 15 on LED
 result = disk_read(0,buffer,i,1);
 GPIOB->ODR &= ~0x8000; // bit 15 off LED
 if(result) printf("SD read error=%u block=%u\n\r",result,i);
 }
 }
Kingston 2GB SD Memory Card: SD-M02G

Write block time: 2300 s/block, or about 200 kbytes/sec
Read block time: 272 s/block, or about 1 Mbytes/sec

Links
MMCA - Multimedia Card Association http://www.mmca.org/
SDA - SD Card Association http://www.sdcard.org/
SDHC Physical Layer Spec. http://www.sdcard.org/developers/tech/sdcard/pls/
About SPI http://elm-chan.org/docs/spi_e.html
Generic FAT file system module http://elm-chan.org/fsw/ff/00index_e.html

with sample code to control MMC/SDSC/SDHC

Low-level driver (drv = 0) block size is 512 bytes
Files needed
edisk.h header file for SD interface
edisk.c implementation file for SD interface
integer.h

LBA stands for logical block address, meaning they are numbers 0, 1, 2, 3,…

// DSTATUS of type BYTE (8 bits)
// STA_NOINIT 0x01 Drive not initialized
// STA_NODISK 0x02 No medium in the drive
// STA_PROTECT 0x04 Write protected

DSTATUS eDisk_Initialize(BYTE drv);

DSTATUS eDisk_Status(BYTE drv);

// DRESULT of type BYTE (8 bits)
// RES_OK 0: Successful
// RES_ERROR 1: R/W Error
// RES_WRPRT 2: Write Protected

EE445M/EE380L.6 Lecture 12.16

Jonathan W. Valvano

// RES_NOTRDY 3: Not Ready
// RES_PARERR 4: Invalid Parameter

DRESULT eDisk_Read (
 BYTE drv, // Physical drive number (0)
 BYTE *buff, // Pointer to buffer to read data
 DWORD sector, // Start sector number (LBA)
 BYTE count); // Sector count (1..255)

//*************** eDisk_ReadBlock ***********
// Read 1 block of 512 bytes from the SD (write to RAM)
// Inputs: pointer to an empty RAM buffer
// sector number of SD card to read: 0,1,2,...
// Outputs: result
// RES_OK 0: Successful
// RES_ERROR 1: R/W Error
// RES_WRPRT 2: Write Protected
// RES_NOTRDY 3: Not Ready
// RES_PARERR 4: Invalid Parameter
DRESULT eDisk_ReadBlock (
 BYTE *buff, /* Pointer to buffer to store data */
 DWORD sector /* Start sector number (LBA) */
)

DRESULT eEisk_Write (
 BYTE drv, // Physical drive number (0)
 const BYTE *buff, // Pointer to the data to be written
 DWORD sector, // Start sector number (LBA)
 BYTE count); // Sector count (1..255)
)
//*************** eDisk_WriteBlock ***********
// Write 1 block of 512 bytes of data to the SD card
// Inputs: pointer to RAM buffer with information
// sector number of SD card to write: 0,1,2,...
// Outputs: result
// RES_OK 0: Successful
// RES_ERROR 1: R/W Error
// RES_WRPRT 2: Write Protected
// RES_NOTRDY 3: Not Ready
// RES_PARERR 4: Invalid Parameter
DRESULT eDisk_WriteBlock (
 const BYTE *buff, /* Pointer to data to be written */
 DWORD sector /* Start sector number (LBA) */
)
void disk_timerproc(void); // to be called every 10ms

High-level FAT16 file system, see StellarisWare sd_card example

