
Laboratory Exercise 9
Interface Protocols

Many embedded systems are implemented using a combination of a processor, memory, and off-the-shelf pe-
ripheral components. To communicate with a processor, peripheral components support a predefined set of com-
munication interfaces. Serial interfaces are usually used to reduce the number of pins needed to exchange data.
One of the popular communication standards is the Serial Peripheral Interface (SPI).

The SPI comprises four wires, as shown in Figure 1. They are: clock (CLK), Master-Out Slave-In (MOSI),
Master-In Slave-Out (MISO) and chip select (CS). The clock signal is generated by the master to synchronize the
exchange of data. The MOSI line is used by the master to send commands and data to the slave, while the MISO
line is used by the slave to respond to commands and send data back to the master. The fourth line, called chip
select, enables or disables the slave device. When multiple slave devices are present, a separate chip select line is
used for each slave.

Master Slave

CS

CLK

MOSI

MISO

CS

CLK

MOSI

MISO

Figure 1: Diagram of SPI connecting a master and a slave.

An example of a device that supports SPI is a Secure Data (SD) card. SD cards are portable non-volatile memory
devices with a capacity to store a large amount of data and provide encryption for security purposes. They are
widely used to store pictures in digital cameras.

This exercise focuses on designing an embedded system on an Altera DE-series board that can access an SD
card using an SPI interface.

Background

A block diagram of the SD card is shown in Figure 2. It consists of a 9-pin interface, a card controller, a memory
interface and a memory core. The 9-pin interface allows the exchange of data between a connected system and
the card controller. The controller can read/write data from/to the memory core using the memory core interface.
In addition, several internal registers store the state of the card.

The controller responds to two types of user requests: control and data. Control requests set up the operation
of the controller and allow access to the SD card registers. Data requests are used to either read data from or write
data to the memory core.

To interface with an SD card, the Altera DE-series board features an SD card slot, on which pins labeled as
CLK, CMD, DAT0, and CD/DAT3 are connected to the FPGA. These four pins are used to exchange data between
the FPGA and the SD card using one of two modes: the SD mode or the SPI mode. By default, the SD card
operates in the SD mode. However, in this exercise we will set the SD card into the SPI mode and communicate
with it using the SPI protocol. Table 1 shows each pin on the SD card, what function it is used for in the SPI mode,
and the pin on the FPGA to which it is connected on Altera DE-series boards.

In this exercise you will create a hardware interface to the SD card using these four pins and write software to
set the SD card into SPI mode to exchange data with it using SPI.

1

Memory Core

Memory Core Interface

Card

Internal Clock

OCR[31:0]

CID[127:0]

RCA[15:0]

DSR[15:0]

CSD[127:0]

SCR[63:0]

Interface
Controller

Interface Driver

Vdd

CLKCMDDAT2
CD/
DAT3 DAT0 DAT1

Figure 2: A block diagram of an SD card.

Table 1: SD Card Pin Function and Location Assignments for Altera DE-series boards.

SD Card Pin SPI Pin
Function

FPGA Pin Location Node NameDE0 DE1 DE2 DE2-70 DE-115
CMD MOSI PIN Y22 PIN Y20 PIN Y21 PIN W28 PIN AD14 SD CMD
DAT0 MISO PIN AA22 PIN W20 PIN AD24 PIN W29 PIN AE14 SD DAT

CD/DAT3 CS PIN W21 PIN U20 PIN AC23 PIN Y30 PIN AC14 SD DAT3
CLK CLK PIN Y21 PIN V20 PIN AD25 PIN T26 PIN AE13 SD CLK

2

Part I

In this part, you are to design an SPI interface to the SD card, specified in Figure 3, and implement a system with
this interface component using the Qsys tool.

SD_CS

SD_CLK

SD_MOSI

SD_MISO
clock

reset_n

D Q
E

D Q
E

D Q

[0]
[1]
[2]

32

32

[0]
[1]

write

chip_select

writedata

readdata
[31]

[3]
...

[2]

...
[31]

0

D Q

[3]

E

Figure 3: A circuit diagram of a simple SPI interface component.

The SPI interface component consists primarily of four flip-flops. Each flip-flop is responsible for transmitting a
signal via the SD CLK and SD MOSI lines and receiving responses from the SD card on the SD MISO line. The
fourth SPI line, SD CS, is used to properly initialize the SD card and set it to function in the SPI mode.

The left-hand side of Figure 3 shows several signals that serve as an Avalon memory-mapped slave interface.
They comprise readdata lines to read the state of the flip-flops, writedata lines to send data through the SPI, as
well as the write and chip select lines to ensure that only data intended for this component is accepted from the
Avalon Interconnect.

Implement the component shown in Figure 3 in a module called my spi interface. Then, include it in a Qsys
system comprising:

1. Nios II processor, standard version

2. SRAM Memory Controller (available as a University Program IP Core). It should have a base address of
0x00000000.

3. JTAG UART core (you can find it under Interface Protocols/Serial)

4. Your SPI interface component, with a base address set to 0x40000000. If you don’t know how to create a
hardware module as a Qsys component, read the Tutorial called Making Qsys Components available on the
Altera University Program website.

Connect all inputs and outputs to the circuit as needed, ensuring that the clock input is connected to the 50-
MHz clock on the DE-series board. Compile and download your design onto the Altera DE-series board. Test
your system by reading and writing data to your SPI interface component. Since there is no SD card connected on
the right-hand side of Figure 3, test the component by simply writing data into the four flip-flops and reading it
back.

3

Part II

In this part, you will use your SPI interface component to communicate with an SD card. To do this, you will set
the SD card into the SPI mode and then send commands to it.

Communication with the SD card is performed by sending commands to it and receiving responses from it. A
valid SD card command consists of 48 bits as shown in Figure 4. The leftmost two bits are the start bits which we
set to (01). They are followed by a 6-bit command number and a 32-bit argument where additional information
may be provided. Next, there are 7 bits containing a Cyclic Redundancy Check (CRC) code, followed by a single
stop bit (1).

Figure 4: Format of a 48-bit command for an SD card.

The CRC code is used by the SD card to verify the integrity of a command it receives. By default, the SD
card ignores the CRC bits for most commands (except CMD8) unless a user requests that CRC bits be checked
upon receiving every message. In this exercise, we assume that errors during transmission of commands and
data between your circuit and the SD card will not occur, and thus omit the discussion of CRC codes. Readers
interested in using the CRC codes may consult the SD Specification - Physical Layer version 2.00 that can be
found on the Web.

Notation CMDX is used to represent the command with a command number X. For example, CMD8 means
the command with (001000)2 as its command number.

To communicate with the SD card you will write a program that runs on the Nios II processor. The program
will control the values of all signals in the SPI interface component, including the SD CLK signal, by reading and
writing data to the component.

Sending a command to the SD card is performed in serial fashion. By default, the MOSI line is set to 1 to
indicate that no message is being sent. The process of sending a message begins with placing its most-significant
bit on the MOSI line and then toggling the SD CLK signal from 0 to 1 and then back from 1 to 0. Then, the second
bit is placed on the MOSI line and again the SD CLK signal is toggled twice. Repeating this procedure for each
bit allows the SD card to receive a complete command.

Once the SD card receives a command it will begin processing it. To respond to a command, the SD card
requires the SD CLK signal to toggle for at least 8 cycles. Your program will have to toggle the SD CLK signal
and maintain the MOSI line high while waiting for a response. The length of a response message varies depending
on the command. The commands you will use in this exercise will get a response mostly in the form of 8-bit
messages, with two exceptions where the response consists of 40 bits.

To ensure the proper operation of the SD card, the SD CLK signal should have a frequency in the range of 100
to 400 kHz. A simple way to do this is to wait an appropriate amount of time between changing the value of the
SD CLK signal. You can experiment with various methods to generate the desired signal or use the code provided
in Figure 5.

Note that the keyword volatile is used for the pointer to the SPI interface. This keyword is required to ensure
that each processor read operation directly accesses the SPI hardware component to obtain its current value. The
C compiler used in the Altera Monitor Program implements this operation by using a ldwio Nios II instruction.
If the volatile keyword is not included, the C compiler may choose to read the SPI interface hardware only once,
and then store its value in a Nios II general-purpose register. Then, subsequent accesses to this address would not
provide updated values, and just use the value stored in the register.

4

volatile int *spi interface = (int *) 0x40000000;

void create clock pulse(void) {
int index;
int contents;

for (index = 0; index ≤ 15; index++){
contents = *spi interface;

}
*spi interface = contents | 0x01;
for (index = 0; index ≤ 15; index++){

contents = *spi interface;
}
*spi interface = contents & 0x0E;

}

Figure 5: C-language code to generate an SD CLK pulse.

To communicate with the SD card, your program has to place the SD card into the SPI mode. To do this, set the
MOSI and CS lines to logic value 1 and toggle SD CLK for at least 74 cycles. After the 74 cycles (or more) have
occurred, your program should set the CS line to 0 and send the command CMD0:

01 000000 00000000 00000000 00000000 00000000 1001010 1

This is the reset command, which puts the SD card into the SPI mode if executed when the CS line is low. The
SD card will respond to the reset command by sending a basic 8-bit response on the MISO line. The structure
of this response is shown in Figure 6. The first bit is always a 0, while the other bits specify any errors that may
have occured when processing the last message. If the command you sent was successfully received, then you will
receive the message (00000001)2.

 7 6 5 4 3 2 1 0
 0

in idle state
erase reset
illegal command
CRC error
erase sequence error
address error
parameter error

Figure 6: Format of a basic 8-bit response to every command in SPI mode.

To receive this message, your program should continuously toggle the SD CLK signal and observe the MISO line
for data, while keeping the MOSI line high and the CS line low. Your program can detect the message, because
every message begins with a 0 bit, and when the SD card sends no data it keeps the MISO line high. Note that the
response to each command is sent by the card a few SD CLK cycles later. If the expected response is not received
within 16 clock cycles after sending the reset command, the reset command has to be sent again.

Following a successful reset, test if your system can successfully communicate with the SD card by sending a
different command. For example, send one of the following commands, while keeping the CS at value 0:

1. 01 001000 00000000 00000000 00000001 10101010 0000111 1 (CMD8) - this command is only available
in the latest cards, compatible with SD card Specifications version 2.00. It is explained in more detail later
in the exercise. For most older cards this command should fail and cause the SD card to respond with a
message that this command is illegal.

5

2. 01 111010 00000000 00000000 00000000 00000000 0111010 1 (CMD58) - request the contents of the
operating conditions register for the connected card.

A response to these commands consists of 40 bits, where the first 8 bits are identical to the basic 8-bit response,
while the remaining 32 bits contain specific information about the SD card. Although the actual contents of the
remainning 32 bits are not important for this part of the exercise, a valid response indicates that your command
was transmitted and processed successfully. If successful, the first 8 bits of the response will be either 00000001
or 00000101 depending on the version of your SD card.

Write a C-language program that allows a user to input a 48-bit command on the keyboard and send it to the
SD card via SPI. Your program should observe the MISO line for at least 16 clock cycles after each command
is sent. If during this time the SD card starts sending a response, your program should continue to toggle the
SD CLK line until all bits in the response have been received, and then for another 8 cycles. It should then print
out the response in the terminal window. Remember to access the memory-mapped SPI interface using a volatile
pointer in C code to ensure that the SPI interface is read properly, as discussed for the example code in Figure 5.

Part III

In this part, you will implement a complete SD card initialization routine to allow you to exchange data with the
SD card. To initialize the card correctly, you will have to send several commands in a sequence and process the
responses received. Once you complete this procedure, you will be able to access the data stored on the SD card.

The SD card protocol supports many commands. In this exercise we will use only a few commands, which are
listed in Table 2. Reserved bits in the argument field will be ingored by the SD card.

Table 2: Detailed Command Description.

Command
Number

Name Argument Width of
Response

Command Description

CMD0 GO IDLE
STATE

[31:0]reserved bits 8 Resets the SD card.

CMD8 SEND IF
COND

[31:12]reserved bits
[11:8]supply voltage
[7:0]check pattern

40 Sends SD Card interface
a condition and asks
the card whether it
supports the voltage
specified in the
argument.

CMD17 READ
SINGLE
BLOCK

[31:0]data address 8 Reads a block of memory
selected by the data
address.

CMD55 APP CMD [31:0]reserved bits 8 Informs the card that
the next command is an
application specific
command rather than a
standard command.

CMD58 READ OCR [31:0]reserved bits 40 Reads the OCR register
of the card. CCS bit
is assigned to OCR[30].

ACMD41 SD SEND
OP COND

[31]resetved
bit [30]HCS
[29:0]reserved bits

8 Sends host capacity
support (HCS)
information and
activates the card’s
initialization process.

6

The steps necessary to complete the SD card initialization are shown in the flowchart in Figure 7. The flowchart
consists of boxes in which a command number is specified. Starting at the top of the flowchart, each command
has to be sent to the SD card, and a response has to be received. In some cases, a response from the card needs to
be processed to decide the next course of action, as indicated by the diamond-shaped decision boxes.

Unusable
Card

CMD0

CMD8

illegal?

Voltage/
check pattern

OK?

CMD55

ACMD41

CMD58

CCS

Ready?

High
Capacity

Card

Standard
Capacity

Card

Yes

No

CMD58

CMD55

ACMD41

Ready?

Yes

No

Standard
Capacity

Card

Voltage No

Yes

Yes

No

Yes

No

10

Response? No

Yes

OK?

Figure 7: Flowchart representing the SD card initialization routine in SPI mode.

To begin initialization, your program should first set the SD card into the SPI mode as in Part II. That is, it should
set the MOSI and CS lines to logic 1 and toggle the SD CLK for at least 74 cycles. Next, your program should
follow the initialization procedure outlined in Figure 7, while keeping the CS line low at all times.

7

The first command to send is the reset command, CMD0, which together with the CS set to 0 places the SD
card into SPI mode. The SD card should respond to this command with the 8-bit message (00000001)2 indicating
no errors. However, should the SD card fail to respond, or respond with an error, another reset command should
be sent until the card is reset properly.

The second command, CMD8, determines if the SD card is compliant with version 2.00 of the SD card speci-
fications. To perform this step successfully, send the 48-bit command CMD8:

01 001000 00000000 00000000 00000001 10101010 0000111 1

Its argument field specifies the valid supply voltage range that the DE-series board supports. The last group of 8
bits of the argument are called a check pattern, and have been set to an alternating pattern of 0s and 1s. Following
the command argument, the CRC code is specified. The CRC code for this command must be correct or the
command will be ignored.

In reply to CMD8, the SD card will issue a 40-bit response in the format shown in Figure 8. The response
indicates how to proceed with the initialization. In particular, if bit 34 is set to 1 then the SD card is an older
model and should be initialized following the left branch of the flowchart in Figure 7. If the command is valid
and no other errors occured, then verify if the check pattern in the response is 10101010 and that the voltage field
is set to 0001. If either of these conditions fails, the SD card will not function correctly and you should stop
the initialization procedure. Otherwise, proceed with the initialization steps of version 2.00 compliant SD card,
following the right-hand side of the flowchart.

39 38 37 36 35 34 33 32 31 ... 28 27 ... 12 11 ... 8 7 ... 0
 0 Reserved Voltage Check PatternVersion

in idle state
erase reset
illegal command
CRC error
erase sequence error
address error
parameter error

Figure 8: Format of the response to CMD8.

In the case of an older SD card, the next step of the initialization procedure is to send CMD58 to obtain the
contents of the Operating Conditions Register (OCR). The OCR indicates the voltage levels the SD card can work
with. To work correctly with the DE-series board, the SD card must be able to operate with supply voltage of
3.3V, which is indicated by bit 21 of the response. If this bit is not set to 1, then the card will not work properly
with the DE-series board. Otherwise, wait for the card to be ready to exchange data.

To determine if the card is ready for exchange of data, your program should send two commands, CMD55
followed by ACMD41, to the SD card. The argument in each of these commands must be 0. After each command
is sent, the SD card will respond. Of particular interest is the response to command ACMD41. The response is a
basic 8-bit response as in Figure 6. It is expected that the bit ”in idle state” will remain as 1 for a while. However,
the bit will be set to 0 when the card is ready. If it is not, send the pair of commands again and again until the
response received is 000000002.

Write a program that initializes the SD card as described above. Your program should send the sequence of
commands (all with the argument field set to 0, except for CMD8) to initialize the SD card and display the response
to each command in the terminal window. When needed, your program should scan the response and proceed with
the initialization only if the correct response has been received.

To simplify your task, implement only the initialization for the SD card that you use for this exercise. Con-
sult the manufacturer’s datasheet to determine if your SD card is compliant with version 2.00 of the SD card
specifications.

8

Part IV

In this part, you will use a read command to access data on the SD card.
CMD17 can be used to read a 512-byte segment of data from the card. A standard-capacity SD card takes as

argument the byte-wise address of the data to be accessed on the card and returns a block of 512 bytes that begins
at the specified address. The command is only valid if the argument is a multiple of 512. Any other address passed
as an argument will result in response with the ”address error” bit set.

If a correct address is provided as an argument in CMD17 and the card is able to access the specified memory
segment, a response (00000000)2 giving an indication of no errors will be sent by the SD card. Following this
response, the card will immediately begin sending the requested data on the MISO line. The data sent by the card
should be ignored until a byte comprising (FE)16 is received. This byte signifies the beginning of a data packet
arranged as shown in Figure 9.

 b7 0 ... byte 511byte 1 CRC

byte 0

 b6 b5 b4 b3 b2 b1 b0 1 1 1 1 1 1 1

Figure 9: Format of a data packet.

The data packet consists of a leading (FE)16 byte, 512 bytes of data, and a 16-bit CRC code. The data is arranged
from the least-significant to the most-significant byte. Each byte of the data starts with the most-significant and
ends with the least-significant bit.

Write a C-language program that reads any user-specified segment of the SD card and displays it in the terminal
window. Your program should ask the user for the segment number (0 to (card size / 512)), send CMD17 with the
appropriate address, and read the specified 512-byte segment of data from the SD card. It should then display the
data in the terminal window 16 bytes per line in hexdecimal notation .

Addendum

This exercise shows how to access an SD card using the SPI protocol. In most applications, the purpose of using
the SD card is to provide access to data.

Usually, files on the SD card are stored with the help of a file system. This allows different systems to access
the same set of files. A popular choice is a FAT (File Allocation Table) file system, because it is relatively easy to
implement. Although the details of the file system are beyond the scope of this exercise, completing all of the parts
of this exercise provides a sufficient basis to read the contents of an SD card. If the card contains a file system, the
next step should be to implement routines to read the appropriate sections of the SD card memory to decode the
locations and sizes of files stored on it.

Troubleshooting

A secure data card is a sensitive device that may easily malfunction if proper initialization and operating procedures
are not followed. To ensure successful completion of this exercise, we recommend that the instructions in each
part be followed very carefully. In particular, be aware that:

1. The initialization procedure works best when it follows 74 (or more) SD CLK cycles during which both the
CS and the MOSI lines are set high. Only afterwards should the CS line be set to 0. Failure to do so causes
the first few instructions sent to the card to fail.

2. After sending each instruction, exactly 8 SD CLK cycles with MOSI line set to 1 must be sent to the
SD card. A second command should not follow until this condition is met. Otherwise, the SD card may
malfunction. It is best to wait for a response after each instruction before sending another command.

3. It is important to wait for the (FE)16 byte as the start of the data packet. You may not assume that there is
only a leading 0 bit followed by 512 bits of data, as the MISO line is not guaranteed to be set to 1 prior to
the start of the data packet.

9

Preparation

The recommended preparation for this laboratory exercise includes:

1. HDL code, Quartus II, and Qsys project for Part I

2. C code for Parts II through IV

Copyright c©2011 Altera Corporation.

10

