Approved	Design
E.Itoh	A.Yazawa

TOSHIBA SD Card Specification

This document is subjected to change without any notice. In developing your designs, please ensure that TOSHIBA products are used within specified the latest version or information.

> Contact for Technical Information: NAND System Engineering Dept. Memory Division TOSHIBA CORPORATION SEMICONDUCTOR COMPANY

IMPORTANT NOTICE

- No parts of this document may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, mechanical electric, photocopying, recording or otherwise, without permission of Toshiba.
- Implementation of the cryptographic functions used in the SD card may be subject to export control by the United States, Japanese and/or other governments.
- Toshiba does not make any warranty express or implied, with respect to this document, including as to licensing, Non-infringement, merchantability or fitness for a particular purpose.

Application

This document describes the specifications of the Toshiba standard SDHC Card.

To commence the design of the host system for SDHC Card, please confirm the latest information and refer the 9.Host Interface design notes.

1. Production Code

Toshiba SDHC Card:

Ca	apacity	Model Name
SDHC Card	4GB	SD-M04G7B7 (VDC)
SDHC Card	4GB	SD-M04G7B7 (VDCCN)
SDHC Card	4GB	SD-M04G7B7K (VDC)
SDHC Card	8GB	SD-M08G7B7 (VDC)
SDHC Card	8GB	SD-M08G7B7 (VDCCN)
SDHC Card	8GB	SD-M08G7B7K (VDC)

2. Product Overview

The SDHC Card is a Memory Card of Small and Thin with SDMI compliant Security method.

(SDMI: Secure Digital Music Initiative)

Contents in the Card can be protected by CPRM based security. This contents security can be accomplished by SDHC Card, host, and security application software combinations. This product is RoHS compatible.

3. SDHC Card Features

Table 1: SD card Features

Design	Toshiba Standard (Fig .1)	
Contents	None (OEM Design Available)	ID, MKB
Security Functions	SD Security Specification Ver.2.00 Compliant (CPRM Based)	Programmed
	*CPRM: Contents Protection for Recording Media Specification	(Toshiba Specific)
Logical Format	SD File System Specification Ver.2.00 Compliant	
	(DOS-FAT Based formatted)	

Label Design, Contents, Media Format

Physical, Electrical

Electrical	Operating Voltage: 2.7V to 3.6 V (Memory Operation)		
	Interfaces: SD Card Interface, (SD: 4 or 1bit)		
	SPI Mode Compatible		
	SD Physical Layer Specification Ver.2.00 Compliant		
Physical	L: 32, W: 24, T: 2.1 (mm), Weight: 3g (Max) 2g (typ.)		
	SD Physical Layer Specification Ver.2.00 Compliant		
	(Detailed Dimensions attached: sheet. 1)		
Durability	SD Physical Layer Specification Ver.2.00 Compliant		
RoHS	RoHS Compatible		

Accessories

Guarantee	Not Applied (Available with OEM requirement)
Description	Not Applied (Available with OEM requirement)
Card Case	Not Applied (Available with OEM requirement)
Card Label	Not Applied (Available with OEM requirement)
Packaging	Not Applied (Available with OEM requirement)
	Refer to Appendix. 5-1 and 5-2.

4. Compatibility

Compliant Specifications

- SD Memory Card Specifications
 - Compliant with PHYSICAL LAYER SPECIFICATION Ver.2.00. (Part1)
 - Compliant with FILE SYSTEM SPECIFICATION Ver.2.00. (Part2)
 - Compliant with SECURITY SPECIFICATION Ver.2.00. (Part3)

Supplementary Explanation are described in "8.Others: Limited Conditions, SD Specification Compliance" in this document.

5. Physical Characteristics

5.1. Environmental Characteristics

1) Standard Operation Conditions

Absolute Maximum Temperature Range: Ta = -25 to +85 degrees centigrade (Humidity less than RH = 95 %, Non condensed)

Recommended Operating Conditions: Ta = 0 to +55 degrees centigrade (Humidity RH = 20% to 85 % Non condensed)

Note:

Absolute maximum temperature range shows the maximum range which can operate in some condition, and DOES NOT mean a guaranteed operation in any conditions.

For the Stable operations, the recommended operating conditions are suggested

or please ask for the customized conditions to Toshiba sales representatives.

2) Storage Temperature

Absolute Maximum Temperature Range: Tstg = -40 to +85 degrees centigrade (Humidity less than RH = 95% Non condensed)

Recommended Storage Conditions: Tstg = -20 to +65 degrees centigrade (Humidity RH = 5% to 85% Non condensed)

Note:

Absolute maximum temperature range shows the maximum range to store. However, DOES NOT mean a guaranteed conditions for long term. There are some impacts on the SD card if stored in this temperature rage for long term. For the long term storage period, the recommended storage conditions is suggested

or please ask for the customized conditions to Toshiba sales representatives.

<u>TOSHIBA</u>

5.2. Physical Characteristics

Mechanical Write Protect Switch

A mechanical sliding tablet on the side of the card can use for write protect switch. The host system shall be responsible for this function.

The card is in a "Write Protected" status when the tablet is located on the "Lock " position. The host system shall not write nor format the card in this status.

The card is in "Write Enabled" status when the tablet is moved to the opposite position (Un-Lock). (Please refer the figures below for the tablet polarity.)

Please slide the tablet till the dead end (stopped position). The tablet is set on the "Write Enabled" position when it is shipped.

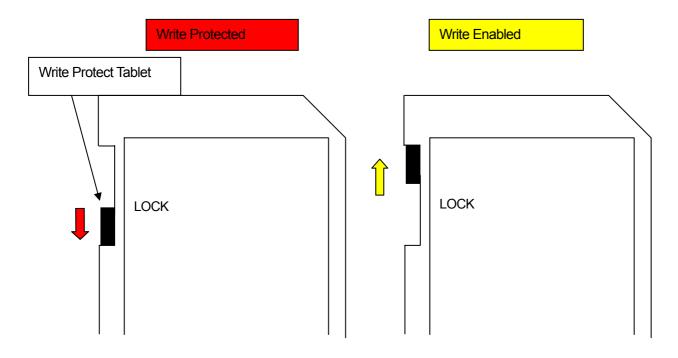


Fig 2: Write Protect Tablet Polarity (Front View)

6. Electrical Interface outlines

6.1. SD card pins

Table 2 describes the pin assignment of the SD card. Fig.3 describes the pin assignment of the SD card.

Please refer the detail descriptions by SD Card Physical Layer Specification.

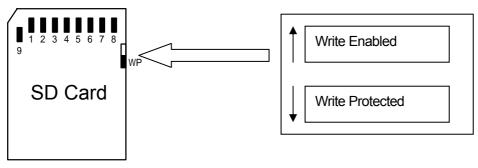


Fig3: SD Card Pin assignment (Back view of the Card)

Table 2.5D Gard pin assignment						
Pins	SD Mode		SPI Mode			
F II 15	Name	IO type ¹	Description	Name	IO Type	Description
1	CD/ DAT3	I/O /PP	Card Detect/ Data Line [Bit3]	CS	I	Chip Select (Negative True)
2	CMD	PP	Command/Response	DI		Data In
3	V _{SS1}	S	Ground	V _{SS}	S	Ground
4	V _{dd}	S	Supply Voltage	V _{dd}	S	Supply Voltage
5	CLK	I	Clock	SCLK		Clock
6	V _{SS2}	S	Ground	V _{SS2}	S	Ground
7	DAT0	I/O /PP	Data Line [Bit0]	DO	O/PP	Data Out
8	DAT1	I/O /PP	Data Line [Bit1]	RSV	-	Reserved (*)
9	DAT2	I/O /PP	Data Line [Bit2]	RSV	-	Reserved (*)

Table 2:SD card	pin assignment
	pint abolg interne

1) S: Power Supply, I: Input, O: Output, I/O: Bi-directionally, 'PP' - IO using push-pull drivers

(*) These signals should be pulled up by host side with 10-100k ohm resistance in the SPI Mode.

6.2 SD Card Bus Topology

The SD Memory Card supports two alternative communication protocols: SD and SPI Bus Mode.

Host System can choose either one of modes. Same Data of the SDHC Card can read and write by both modes.

SD Mode allows the 4-bit high performance data transfer. SPI Mode allows easy and common interface for SPI channel. The disadvantage of this mode is loss of performance, relatively to the SD mode.

6.2.1 SD Bus Mode protocol

The SD bus allows the dynamic configuration of the number of data line from 1 to 4 Bi-directional data signal. After power up by default, the SD card will use only DAT0. After initialization, host can change the bus width.

Multiplied SD cards connections are available to the host. Common V_{dd} , V_{ss} and CLK signal connections are available in the multiple connections. However, Command, Respond and Data lined (DAT0-DAT3) shall be divided for each card from host.

This feature allows easy trade off between hardware cost and system performance. Communication over the SD bus is based on command and data bit stream initiated by a start bit and terminated by stop bit.

Command:

Commands are transferred serially on the CMD line. A command is a token to starts an operation from host to the card. Commands are sent to an addressed single card (addressed Command) or to all connected cards (Broad cast command).

Response:

Responses are transferred serially on the CMD line.

A response is a token to answer to a previous received command. Responses are sent from an addressed single card or from all connected cards.

Data:

Data can be transfer from the card to the host or vice versa. Data is transferred via the data lines.

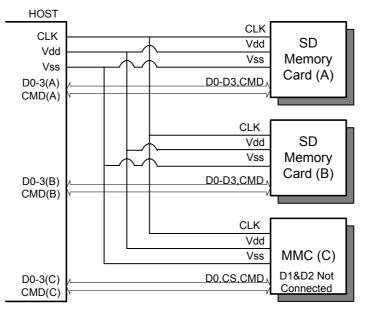


Fig 4: SD Card (SD Mode) connection Diagram

CLK:	Host card Clock signal
CMD:	Bi-directional Command/ Response Signal
DAT0 - DAT3:	4 Bi-directional data signal
V _{dd} :	Power supply
V _{ss} :	GND

SD-M04G7B7 (VDC), SD-M04G7B7 (VDCCN), SD-M04G7B7K (VDC) SD-M08G7B7 (VDC), SD-M08G7B7 (VDCCN), SD-M08G7B7K (VDC) Table 3: SD Mode Command Set

(+: Implemented, -: Not Implemented)

CMD Index	Abbreviation	Implementa tion	Note
CMD0	GO_IDLE_STATE	+	
CMD2	ALL_SEND_CID	+	
CMD3	SEND_RELATIVE_ADDR	+	
CMD4	SET_DSR	-	DSR Register is not implemented.
CMD6	SWITCH_FUNC	+	
CMD7	SELECT/DESELECT_CARD	+	
CMD9	SEND_CSD	+	
CMD10	SEND_CID	+	
CMD12	STOP_TRANSMISSION	+	
CMD13	SEND_STATUS	+	
CMD15	GO INACTIVE STATE	+	
CMD16	SET BLOCKLEN	+	
CMD17	READ SINGLE BLOCK	+	
CMD18	READ MULTIPLE BLOCK	+	
CMD24	WRITE BLOCK	+	
CMD25	WRITE MULTIPLE BLOCK	+	
CMD27	PROGRAM CSD	+	
CMD28	SET WRITE PROT	-	Internal Write Protection is not implemented.
CMD29	CLR WRITE PROT	-	Internal Write Protection is not implemented.
CMD30	SEND WRITE PROT	-	Internal Write Protection is not implemented.
CMD32	ERASE WR BLK START	+	
CMD33	ERASE WR BLK END	+	
CMD38	ERASE	+	
CMD42	LOCK UNLOCK	+	
CMD55	APP CMD	+	
CMD56	GEN CMD	-	This command is not specified.
ACMD6	SET BUS WIDTH	+	
ACMD13	SD STATUS	+	
ACMD22	SEND NUM WR BLOCKS	+	
ACMD23	SET WR BLK ERASE COUNT	+	
ACMD41	SD APP OP COND	+	
ACMD42	SET CLR CARD DETECT	+	
ACMD51	SEND SCR	+	
ACMD18	SECURE READ MULTI BLOCK	+	
ACMD25	SECURE WRITE MULTI BLOCK	+	
ACMD26	SECURE WRITE MKB	+	
ACMD38	SECURE_ERASE	+	
ACMD43	GET MKB	+	
ACMD44	GET MID	+	
ACMD45	SET CER RN1	+	
ACMD46	SET CER RN2	+	
ACMD47	SET CER RES2	+	
ACMD48	SET CER RES1	+	
ACMD49	CHANGE SECURE AREA	+	

CMD28, 29 and CMD30 are Optional Commands. ≻

CMD4 is not implemented because DSR register (Optional Register) is not implemented. CMD56 is for vender specific command. Which is not defined in the standard card. ۶

≻

6.2.2 SPI Bus mode Protocol

The SPI bus allows 1 bit Data line by 2-chanel (Data In and Out).

The SPI compatible mode allows the MMC Host systems to use SD card with little change. The SPI bus mode protocol is byte transfers.

All the data token are multiples of the bytes (8-bit) and always byte aligned to the CS signal.

The advantage of the SPI mode is reducing the host design in effort.

Especially, MMC host can be modified with little change.

The disadvantage of the SPI mode is the loss of performance versus SD mode.

Caution: Please use SD Card Specification. DO NOT use MMC Specification.

For example, initialization is achieved by ACMD41, and be careful to Register. Register definition is different, especially CSD Register.

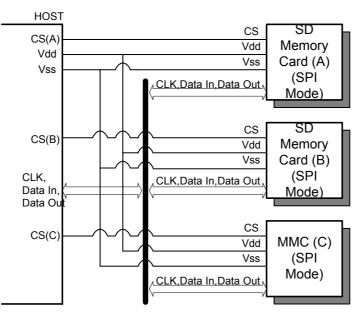


Fig 5: SD card (SPI mode) connection diagram

CS:	Card Select Signal
CLK:	Host card Clock signal
Data in:	Host to card data line
Data out:	card to host data line
V _{dd} :	Power supply
V _{ss} :	GND

Table.4: SPI Mode Command set (+: Implemented, -: Not Implemented)

			t Implemented)
CMD Index	Abbreviation	Implementa tion	Note
CMD0	GO IDLE STATE	u011 +	
CMD1	SEND_OP_CND	+	NOTICE: DO NOT USE (SEE Fig.6 and 9.2)
CMD6	SWITCH FUNC	+	NOTICE. DO NOT COE (CEE Fig. 0 and 9.2)
CMD9	SEND CSD	+	
CMD10	SEND CID	+	
CMD12	STOP TRANSMISSION	+	
CMD13	SEND STATUS	+	
CMD16	SET BLOCKLEN	+	
CMD17	READ SINGLE BLOCK	+	
CMD18	READ MULTIPLE BLOCK	+	
CMD24	WRITE BLOCK	+	
CMD25	WRITE MULTIPLE BLOCK	+	
CMD27	PROGRAM CSD	+	
CMD28	SET WRITE PROT	-	Internal Write Protection is not implemented.
CMD29	CLR WRITE PROT	-	Internal Write Protection is not implemented.
CMD30	SEND WRITE PROT	-	Internal Write Protection is not implemented.
CMD32	ERASE WR BLK START ADDR	+	
CMD33	ERASE WR BLK END ADDR	+	
CMD38	ERASE	+	
CMD42	LOCK UNLOCK	+	
CMD55	APP CMD	+	
CMD56	GEN_CMD	-	This command is not specified.
CMD58	READ_OCR	+	
CMD59	CRC_ON_OFF	+	
ACMD6	SET_BUS_WIDTH	+	
ACMD13	SD_STATUS	+	
ACMD22	SEND_NUM_WR_BLOCKS	+	
ACMD23	SET_WR_BLK_ERASE_COUNT	+	
ACMD41	SD_APP_OP_COND	+	
ACMD42	SET_CLR_CARD_DETECT	+	
ACMD51	SEND_SCR	+	
ACMD18	SECURE_READ_MULTI_BLOCK	+	
ACMD25	SECURE_WRITE_MULTI_BLOCK	+	
ACMD26	SECURE_WRITE_MKB	+	
ACMD38	SECURE_ERASE	+	
ACMD43	GET_MKB	+	
ACMD44	GET_MID	+	
ACMD45	SET_CER_RN1	+	
ACMD46	SET_CER_RN2	+	
ACMD47	SET_CER_RES2	+	
ACMD48	SET_CER_RES1	+	
ACMD49	CHANGE_SECURE_AREA	+	

> CMD28, 29 and CMD30 are Optional Commends.

> CMD56 is for vender specific command. Which is not defined in the standard card.

<u>TOSHIBA</u>

6.3. Card Initialize

To initialize the Toshiba SD card, follow the following procedure is recommended example.

1) Supply Voltage for initialization.

Host System can apply the Operating Voltage from initialization to the card.

Apply more than 74 cycles of Dummy-clock to the SD card.

2) Select operation mode (SD mode or SPI mode)

In case of SPI mode operation, host should drive 1 pin (CD/DAT3) of SD Card I/F to "Low" level. Then, issue CMD0.

In case of SD mode operation, host should drive or detect 1 pin of SD Card I/F (Pull up register of 1 pin is pull

up to "High" normally).

Card maintain selected operation mode except re-issue of CMD0 or power on below is SD mode initialization procedure.

3) Send the ACMD41 with Arg = 0 and identify the operating voltage range of the Card.

4) Apply the indicated operating voltage to the card.

Reissue ACMD41 with apply voltage storing and repeat ACMD41 until the busy bit is cleared.

(Bit 31 Busy = 1) If response time out occurred, host can recognize not SD Card.

Note: In MMC-SPI Mode, CMD1 can use in this state. However, do not use CMD1 in case of SD Mode.

5) Issue the CMD2 and get the Card ID (CID).

Issue the CMD3 and get the RCA. (RCA value is randomly changed by access, not equal zero)

6) Issue the CMD7 and move to the transfer state.

If necessary, Host may issue the ACMD42 and disabled the pull up resistor for Card detect.

- 7) Issue the ACMD13 and poll the Card status as SD Memory Card. Check SD_CARD_TYPE value. If significant 8 bits are "all zero", that means SD Card. If it is not, stop initialization.
- 8) Issue CMD7 and move to standby state.

Issue CMD9 and get CSD.

Issue CMD10 and get CID.

9) Back to the Transfer state with CMD7.

Issue ACMD6 and choose the appropriate bus-width.

Then the Host can access the Data between the SD card as a storage device.

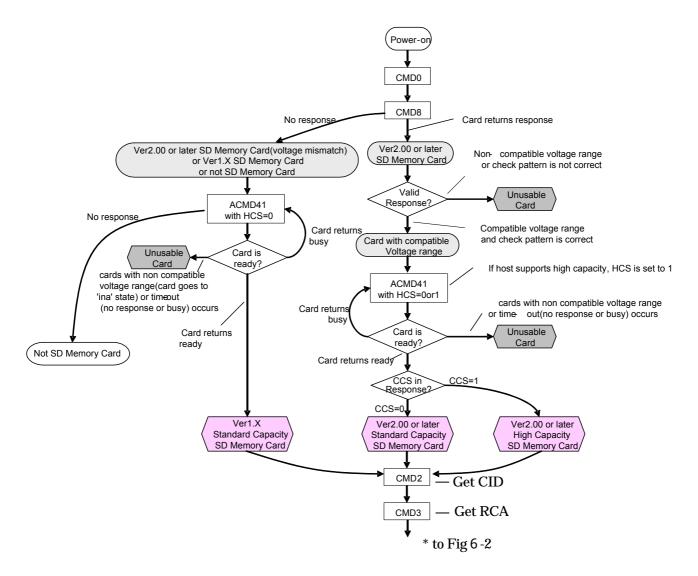


Fig 6-1. SD card Initialize Procedure

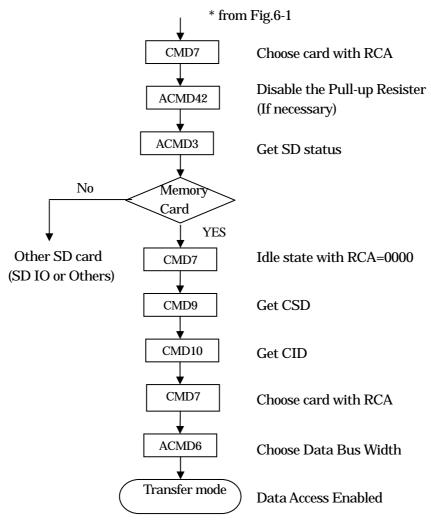


Fig 6-2. SD card Initialize Procedure

6.4. SD card Electrical Characteristics

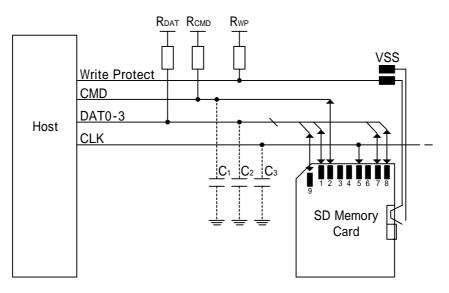


Fig7: SD card Connection diagram

6.4.1 Absolute Maximum Conditions

Table	5. Abs	solute	Maximum	Conditions
Table	0.70	Junic	Maximum	00110110113

Item	Symbol	Value	Unit
Supply Voltage	V _{DD}	-0.3 to 4.6	V
Input Voltage	V _{IN}	-0.3 to VDD+0.3	V

<u>TOSHIBA</u>

6.4.2 DC Characteristics

Table 6: DC Characteristics								
lt	em	Symbol	Condition	MIN.	Тур.	MAX.	Unit	Note
Supply Voltage 1		V _{DD}	-	2.0	-	3.6	V	For CMD0, 15,55, ACMD41 Only
Supply	Voltage 2		-	2.7	-	3.6	V	For All commands
Input	High Level	VIH	-	VDD*0.625	-	-	V	
Voltage	Low Level	VIL	-	-	-	VDD*0.25	V	
Output	High Level	V_{OH}	VDD = 2V IOH = -100uA	VDD*0.75	-	-	V	
Voltage	Low Level	V _{OL}	VDD = 2V IOL = 100uA	-	-	VDD*0.125	V	
Standby Current		I _{CC1}	3.6V Clock 25MHz	-	-	30	mA	
			3.0V Clock Stop	-	I	0.25	ШA	@25 deg C
Oporatio	n Current *)	I	3.6V/25MHz,	-	-	150	m ^	Write
Operatio	in Current	I _{CC2}	50MHz	-	-	150	mA	Read
-	tage Setup ime	Vrs	-	-	-	250	ms	

*) Peak Current: RMS value over a 10usec period

	Table 7: Signal Capacitance								
Item	Symbol	Min.	Max.	Unit	Note				
Pull up Resistance	R _{CMD} R _{DAT}	10	100	K Ohm					
Bus Signal Line Capacitance	CL	-	250	pF	F _{PP} <5MHz (21Cards)				
Bus Signal Line Capacitance	CL	-	100	pF	F _{PP} <20MHz (7Cards)				
Single Card Capacitance	C _{CARD}	-	10	pF					
Pull up Resistance inside card(pin1)	R _{DAT3}	10	90	K Ohm					

Table 7: Signal Capacitance

Note: WP pull-up (R_{wp}) Value is depend on the Host Interface drive circuit.

۸

6.4.3 AC Characteristics (Default)

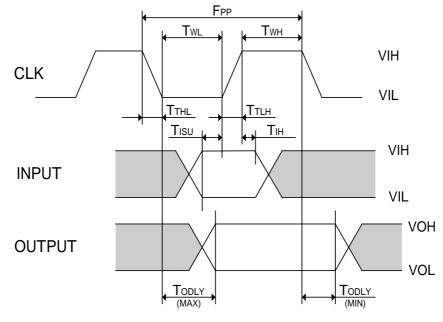
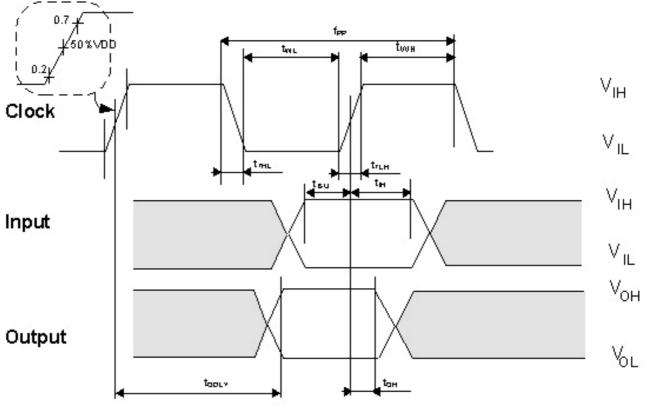



Fig 8-1: AC Timing Diagram (Default)

Table 8-1: AC Characteristics	(Default)
-------------------------------	-----------

Item	Symbol	Min.	Max.	Unit	Note
Clock Frequency (In any Sates)	Fsty	0	25	MHz	CL<100pF (7Cards)
Clock Frequency (Data transfer Mode)	Fpp	0.1	25	MHz	CL<100pF (7Cards)
Clock Frequency (Card identification Mode)	Fod	100	400	kHz	CL<250pF (21Cards)
Clock Low Time	T _{WL}	10	-	ns	CL<100pF
Clock High Time	T _{WH}	10	-	ns	(7Cards)
Clock Rise Time	T _{TLH}	-	10	ns	(7 Calus)
Clock Fall Time	T _{THL}	-	10	ns	
Clock Low Time	T _{WL}	50	-	ns	
Clock High Time	T _{WH}	50	-	ns	C∟ < 250pF
Clock Rise Time	T _{TLH}	-	50	ns	(21Cards)
Clock Fall Time	T _{THL}	-	50	ns	
Input Setup Time	T _{ISU}	5	-	ns	C∟ < 25pF
Input Hold Time	Τ _{ΙΗ}	5	-	ns	(1Cards)
Output Delay Time	T _{ODLY}	0	14	ns	(Toalus)

6.4.4 AC Characteristics (High-Speed)

Shaded areas are not valid

ltem	Symbo I	Min.	Max.	Unit	Note
Clock Frequency (During Data transfer)	f _{PP}	0	50	MHz	
Clock Low Time	t _{wL}	7	-	ns	
Clock High Time	t _{wH}	7	-	ns	
Clock Rise Time	t _{TLH}	-	3	ns	
Clock Fall Time	t_{THL}	-	3	ns	
Input Setup Time	t _{ISU}	6	-	ns	
Input Hold Time	t _{IH}	2	-	ns	
Output Delay Time		0	14	ns	
Output Hold Time	Т _{он}	2.5	-	ns	
Total System capacitance for each line	CL	-	40	рF	

Tahle	8-2· AC	Characteristics	(High_Speed	4)
Iable	0-2. AC	Characteristics	(I light-opeed	J

7. Card Internal Information

7.1. Security Information

MKB (Media Key Block) and Media ID are Toshiba Standard Information. These informations are compliance with the CPRM. Note: The security information is NOT Development information for evaluation.

Host System shall be compliance with the CPRM to use the security function.

This information is kept as confidential because of security reasons.

7.2. SD Card Registers

The SD card has six registers and SD Status information: OCR, CID, CSD, RCA, DSR, SCR and SD Status. DSR IS NOT SUPPORTED in this card.

There are two types of register groups.

MMC compatible registers: OCR, CID, CSD, RCA, DSR, and SCR SD card Specific: SD Status

Resister Name	Bit Width	Description
OCR	32	Operation Conditions (VDU Voltage Profile and Busy Status Information)
CID	128	Card Identification information
CSD	128	Card specific information
RCA	16	Relative Card Address
DSR	16	Not Implemented (Programmable Card Driver): Driver Stage Register
SCR	64	SD Memory Card's special features
SD Status	512	Status bits and Card features

Table.9: SD card Registers

7.2.1. OCR Register

This 32-bit register describes operating voltage range and status bit in the power supply. (Refer Appendix 2. for the detail)

Table. TU: OCR register definition						
OCR bit	VDD voltage		Initial value			
position	window	4GB 8GB				
31	Card power up		"0" = busy			
	status bit (busy)		"1" = ready			
30	Card Capacity		"0"=SD Memory Card			
	Status		"=SDHC Memory Card			
29-24	reserved		All 'O'			
23	3.6 – 3.5		1			
22	3.5 – 3.4		1			
21	3.4 – 3.3		1			
20	3.3 – 3.2		1			
19	3.2 – 3.1		1			
18	3.1 – 3.0	1				
17	3.0 – 2.9		1			
16	2.9 – 2.8		1			
15	2.8 – 2.7		1			
14	2.7 – 2.6		0			
13	2.6 – 2.5		0			
12	2.5 – 2.4		0			
11	2.4 – 2.3		0			
10	2.3 – 2.2		0			
9	2.2 – 2.1		0			
8	2.1 – 2.0	0				
7	2.0 – 1.9	0				
6	1.9 – 1.8	0				
5	1.8 – 1.7	0				
4	1.7 – 1.6		0			
3-0	reserved		All '0'			

Table.10: OCR register definition

bit 23-4: Describes the SD Card Voltage

bit 31 indicates the card power up status. Value "1" is set after power up and initialization procedure has been completed.

<u>TOSHIBA</u>

7.2.2. CID Register

The CID (Card Identification) register is 128-bit width. It contains the card identification information. (Refer Appendix 3. for the detail) The Value of CID Register is vender specific.

	Tabel.11: CID Register							
Field	Width	CID-slice	Initial Value					
			4GB 8GB					
MID	8	[127:120]	02 h					
OID	16	[119:104]	"TM" (544D h)					
PNM	40	[103:64]	"SD04G" "SD08G"					
PRV	8	[63:56]	(a) Product revision					
PSN	32	[55:24]	(a) Product serial number					
-	4	[23:20]		All 'O'				
MDT	12	[19:8]	(b) Manufacture date					
CRC	7	[7:1]	(c) CRC					
-	1	[0:0]		1				

(a), (b): Depends on the SD Card. Controlled by Production Lot. (c) Depends on the CID Register

• MID

8 bit binary number, Indicates the Manufacture ID allocated by the SDA. \rightarrow <u>02 -h (Indicates Toshiba)</u> (Unit: -h means Hex-decimal value, here after)

• OID

16 bit binary number, Indicates the Manufacture ID allocated by the SDA. \rightarrow 544D -h = "TM" in ASCII String (Indicates Toshiba)

• PNM

5 ASCII Characters long (40 bit), Toshiba Product Code.

 \rightarrow Toshiba Standard SD card indicates as below by capacity.

4GB: "SD04G" (0x5344303447) 8GB: "SD08G" (0x5344303847)

• PRV

Product Revision of the card.

→ Currently 00 -h = Rev.0. 0: This number may be changed without any notice by TOSHIBA.

• PSN

32 bit serial number of unsigned integer.

 \rightarrow Uniquely assigned integer

• MDT

The manufacturing date composed of two-hexadecimal digits.

 $\rightarrow \underline{\text{CID-Slice [11:8] Month Field}} (Exp. 1h = January)$ $\underline{\text{CID-Slice [19:12] Year Field}} (Exp. 0h = 2000)$

• CRC

Checksum of CID contents.

 \rightarrow <u>CRC 7 Checksum</u> (See Chapter 7. of the SD PHYSICAL SPECIFICATION)

7.2.3. CSD Register

CSD is Card-Specific Data register provides information on 128bit width. Some field of this register can writable by PROGRAM_CSD (CMD27).

		_	1010.12.001	<u> </u>	Initial Value		
Field	Wid	Cell	CSD	4GB	8GB		
	th	Type ⁽¹⁾	slice				
CSD_STRUCTURE	2	R	[127:126]		01		
-	6	R	[125:120]		AII 'O'		
TAAC	8	R	[119:112]		0_0001_110(1ms)		
NSAC	8	R	[111:104]		00000000		
TRAN_SPEED	8	R	[103:96]		0_0110_010(25Mbp	s)	
CCC	12	R	[95:84]		0_1_0_1_1_0_1_1_0_1	_0_1	
READ_BL_LEN	4	R	[83:80]	1001	1001		
READ_BL_PARTIAL	1	R	[79:79]		0		
WRITE_BLK_MISALIGN	1	R	[78:78]		0		
READ_BLK_MISALIGN	1	R	[77:77]		0		
DSR_IMP	1	R	[76:76]		0		
-	6	R	[75:70]		AII 'O'		
C_SIZE	22	R	[69:48]	0x1DFF	0x3BFF		
-	1	R	[47:47]		0		
ERASE_BLK_EN	1	R	[46:46]		1		
SECTOR_SIZE	7	R	[45:39]		11_1111_1		
WP_GRP_SIZE	7	R	[38:32]		000_0000		
WP_GRP_ENABLE	1	R	[31:31]		0		
-	2	R	[30:29]		00		
R2W_FACTOR	3	R	[28:26]		010		
WRITE_BL_LEN	4	R	[25:22]		1001		
WRITE_BL_PARTIAL	1	R	[21:21]		0		
-	2	R	[20:16]		AII 'O'		
FILE_FORMAT_GRP	1	R	[15:15]		0		
COPY	1	R/W ⁽¹⁾	[14:14]		0		
PERM_WRITE_PROTECT	1	R/W ⁽¹⁾	[13:13]		0		
TMP_WRITE_PROTECT	1	R/W	[12:12]	0			
FILE_FORMAT	2	R	[11:10]	00			
-	2	R	[9:8]	AII '0'			
CRC	7	R/W	[7:1]		(CRC)		
-	1	-	[0:0]		1		

Table.12: CSD Register

Cell Types: R: Read Only, R/W: Writable and Readable, R/W(1): One-time Writable / Readable Note: Erase of one data block is not allowed in this card. This information is indicated by "ERASE_BLK_EN".

Host System should refer this value before one data block size erase.

•CSD_STRUCTURE

Version number of the related CSD structure.

CSD_STRUCTURE	CSD STRUCTURE VERSION	Valid for SD PHYSICAL LAYER SPECIFICATION Version
0	CSD Version 1.0	Version 1.0-1.10
		Version 2.00/Standard Capacity
1	CSD Version 2.0	Version 2.00/High Capacity
2-3	Reserved	

Table 12-1:CSD STRUCTURE

 \rightarrow Version 2.0 Compliant

• TAAC

Defines the asynchronous part of the data access time.

TAAC bit	Code	
2:0	Time Unit 0 = 1ns, $1 = 10$ ns, $2 = 100$ ns, $3 = 1$ <i>u</i> S, $4 = 10$ <i>u</i> S, $5 = 100$ <i>u</i> S, 6 = 1ms, $y = 10$ ms	
6:3	Time Value 0 = Reserved,1 = $1.0,2 = 1.2,3 = 1.3,4 = 1.5,5 = 2.0,$ 6 = $2.5,$ 7 = $3.0,8 = 3.5,9 = 4.0,A = 4.5,B = 5.0,C = 5.5,D = 6.0,E = 7.0,F = 8.0$	
7	Reserved	

Table 12-2: TAAC Access Time Definition

 \rightarrow <u>1ms</u>

• NSAC

Defines the worst case for the clock dependent factor of the data access time.

Unit is 100 clock cycle.

Total access time equal TAAC plus NSAC, calculation with actual clock frequency.

This is average delay by the first clock out put for data block.

→<u>0 clock Cycle</u>

•TRAN_SPEED

The following table defines the maximum data transfer rate per one data line.

TRAN_SPEED bit	Code
2:0	Transfer Rate Unit 0 = 100kbit/s,1 = 1Mbit/s,2 = 10Mbit/s,3 = 100Mbit/s, 4-7 = Reserved
6:3	Time Value 0 = Reserved,1 = $1.0,2 = 1.2,3 = 1.3,4 = 1.5,5 = 2.0,$ 6 = $2.5,$ 7 = $3.0,8 = 3.5,9 = 4.0,A = 4.5,B = 5.0,C = 5.5,D = 6.0,E = 7.0,F = 8.0$
7	Reserved

Table 12-3: Maximum Data Transfer Rate Definition

 \rightarrow Trans Rate is 25Mbps

• CCC

The Card Class Command Register (CCC) defines which command classes are supported by this card.

CCC bit	Supported Card command Class
0	Class 0
1	Class 1
11	Class 11

Table12-4: Supported Card Command Classes

 \rightarrow Class 0,2,4,5,7,8 ,10 are supported

•READ_BL_LEN

The Maximum read data block length for reading is computed as $2^{\text{READ}_B\text{L}_L\text{EN}}$. READ BL LEN is always equal to WRITE BL LEN.

READ_BL_LEN	Block Length
0-8	Reserved
9	2 ⁹ = 512Bytes
•••	
11	2 ¹¹ = 2048Bytes
12-15	Reserved

Table12-5:DATA Block Length

→<u>512Bytes</u>

•READ_BL_PARTIAL

This field is fixed "0".

 \rightarrow "0": Partial block read is inhibited and only unit of block access is allowed.

• WRITE_BLK_MISALIGN

Define whether the data block to be written by one command can be spread over more than one physical block of the Flash Memory Device.

WRITE_BLK_MISALIGN	Across Block Boundaries Write	
0	Not Allowed	
1	Allowed	

Table 12-6:WRITE BLK MISALIGN

 \rightarrow <u>"0": Not allowed on this card</u>

•READ_BLK_MISALIGN

Define whether the data block to be read by one command can be spread over more than one physical block of the Flash Memory Device.

Table 12-7: READ BLK MISALIGN

READ_BLK_MISALIGN	Across Block Boundaries Read
0	Not Allowed
1	Allowed

 \rightarrow <u>"0": Invalid on this card</u>

·DSR_IMP

If set, a driver stage register (DSR) is implemented (supported).

Table	10 0.	nep	
Idule	12-0.	DOR	

DSR_IMP	DSR Type
0	DSR NOT Implemented
1	DSR Implemented

→ <u>"0": DSR NOT implemented</u>

·C_SIZE

This parameter is used to compute the user's data card capacity(Not include the security area) as below.

Memory Capacity = BLOCKNR * BLOCK_LEN

BLOCKNR = (C_SIZE + 1) * 512 KB

→ The user's data card capacity is as below. 4GB: 3840 MB 8GB: 7680 MB

•ERASE_BLK_EN

(Caution!: This is different from MMC. Please be careful.)

WRITE_BL_LEN defines whether erase of one write block(see WRITE_BL_LEN) is allowed.

Table12-12: ERASE BLK EN

ERASE_BLK_EN	Description
0	Host cannot erase by WRITE_BL_LEN
1	Host can erase by WRITE_BL_LEN

→ "1" : Can erase by WRITE_BL_LEN unit (512 Bytes)

So should be check this value, and recognize how to erase.

• SECTOR_SIZE

This field is fixed to "11_1111_1". This value does not relate to erase operation. On this cards memory boundary is indicated by AU size and this field should not be used.

•WP_GRP_SIZE

This field is fixed "0x00". The high capacity SD Memory card does not support write protected groups.

•WP_GRP_ENABLE

This field is fixed "0". The high capacity SD Memory card does not support write protected groups.

Table12-13: WP_GRP_ENABLE		
WP_GRP_ENABLE	Description	
0	NOT Implemented	
1	Implemented	

 \rightarrow <u>"0": WP Group is not Implemented on this card</u>

R2W_FACTOR

This field is fixed to "0x2", which indicates 4 multiples. However, host should not use this factor and should use 250ms for write timeout.

R2W_FACTOR	Multiples of read Access Time
0	1
1	2(Write half as fast as read)
2	4
3	8
4	16
5	32
6,7	Reserved

Table12-14: R2W FACTOR

•WRITE_BL_LEN

The maximum write block length is calculated as $2^{\ensuremath{\mathsf{WRITE_BL_LEN}}}$.

WRITE_BL_LEN	Block Length
0-8	Reserved
9	2 ⁹ = 512Bytes
• • •	
11	2 ¹¹ = 2048Bytes
12-15	Reserved

Table12-15: DATA Block Length

 \rightarrow <u>"9": 512Bytes, on this card</u>

• WRITE_BL_PARTIAL

This field is fixed to "0", which indicates partial block is inhibited and only unit of block access is allowed.

Table12-16:	Write	Data	size
	V VIIICO	Duiu	

WRITE_BL_PARTIAL	Block Oriented write Data size	
0	Only the WRITE_BL_LEN size or 512Bytes are available	
1	Partial size (Minimum 1Byte) write available	

 \rightarrow "0": Partial size write is not available on this card

• FILE_FORMAT_GRP

This field is set to "0". Host should not use this field.

· COPY

Defines the contents of this card is original (=0) or duplicated (1). This bit is one time programmable.

Table12-18: COPY

COPY	Description
0	Original
1	Сору

 \rightarrow <u>"0": Original on this card</u>

• PERM_WRITE_PROTECT

Permanently protects the whole card content against write or erase. This bit is one time programmable.

i i		
	PERM_WRITE_PROTECT	Description
	0	Not protected/Writable
	1	Permanently Write protected

 \rightarrow "0": Not Protected/Writable on this card

•TMP_WRITE_PROTECT

Temporarily protects the whole card content against write or erase.

Table12-20: TMP_WRITE_PROTECT

TMP_WRITE_PROTECT	Description
0	Not protected/Writable
1	Temporarily Write Erase protected

 \rightarrow "0": Not Protected/Writable on this card

•FILE_FORMAT

This field is set to "0". Host should not use this field.

Table12-17: File Format

FILE_FORMAT	Kinds	
0	Hard disk-like File system with partition table	
1	DOS FAT(floppy-like) with boot sector only	
	(No partition table)	
2	Universal File Format	
3	Others/Unknown	
0,1,2,3	Reserved	

• CRC

Calculated CRC for default data is set here.

Host System is responsible to re-calculate this CRC if any CSD contents are changed.

7.2.4. RCA Register

The writable 16bit relative card address register carries the card address in SD Card mode.

7.2.5. DSR Register

This register is not implemented on this card

7.2.6. SCR Register

SCR (SD Card Configuration Register) provides information on SD Memory Card's special features. The size of SCR Register is 64 bit.

Field	Width	Cell	SCR		Value
		Туре	Slice	4GB	8GB
SCR_STRUCTURE	4	R	[63:60]		0000
SD_SPEC	4	R	[59:56]		0010
DATA_STAT_AFTER_ERASE	1	R	[55:55]		1
SD_SECURITY	3	R	[54:52]		011
SD_BUS_WIDTHS	4	R	[51:48]		0101
-	16	R	[47:32]		All '0'
-	32	R	[31:0]	Reserve	d for manufacture usage

Table13: SCR Register

• SCR_STRUCTURE

Version number of the related structure in the SD Card PHYSICAL LAYER SPECIFICATION.

Table13-1: SCR STRUCTURE

SCR_STRUCTURE	SCR STRUCTURE VERSION	Valid for SD PHYSICAL LAYER SPECIFICATION
0	SCR Version 1.0	Version 1.0-2.00
1-15	Reserved	

 \rightarrow "0": Version 1.0 Compliant on this card

SD_SPEC

Describes the SD PHYSICAL LAYER SPECIFICATION version supported by this card.

Table13-2: SD_SPEC

SD_SPEC	SD PHYSICAL LAYER SPECIFICATION Version
0	Version 1.0-1.01
1	Version 1.10
2	Version2.00
3-15	Reserved

 \rightarrow <u>"2" = Version2.00 Compliant on this card</u>

•DATA_STAT_AFTER_ERASE

This indicates the block "0" or "1" after erase operation.

 \rightarrow "1" on this card

•SD_SECURITY

Describe the security algorithm supported by the Card.

Supported Security Specification
No Security
Not used
Version 1.01
Version 2.0
Reserved

Table13-3: Supported Security Algorithm

 \rightarrow <u>"3": Version 2.0 on this card</u>

•SD_BUS_WIDTHS

Indicates the DAT bus width that a supported by this card.

SD_BUS_WIDTHS	Supported BUS width	
0 bit position	1 bit(DAT0)	
1 st bit position	Reserved	
2 nd bit position	4 bit(DAT0-3)	
3 rd bit position	Reserved	

Table 13-4:Supported Bus Widths

 \rightarrow "0101": 1 and 4 bit supported.

<u>TOSHIBA</u>

7.2.7. SD Status

Identifier	Wid	Туре	SD Status	Value			
	th		Slice	4GB	8GB		
DAT_BUS_WIDTH	2	SR	[511:510]		0x0000		
SECURED_MODE	1	SR	[509]		0		
-	13	-	[508:496]		AII 'O'		
SD_CARD_TYPE	16	SR	[495:480]		0x0000		
SIZE_OF_PROTECTED_AREA	32	SR	[479:448]	0x02000000 0x03000000			
SPEED_CLASS	8	SR	[447:440]	0x02			
PERFORMANCE_MOVE	8	SR	[439:432]	0x02			
AU_SIZE	4	SR	[431:428]	0x9			
-	4	-	[427:424]		AII 'O'		
ERASE_SIZE	16	SR	[423:408]	0x0200 0x0200			
ERASE_TIMEOUT	6	SR	[407:402]	42	42		
ERASE_OFFSET	2	SR	[401:400]	2			
-	88	-	[399:312]	AII 'O'			
-	312	-	[311:0]	Reserved for manufacturer		rer	

Table14: SD Status

S: Status bit

R: Set based on Command Response

DAT_BUS_WIDTH

Indicate the currently defined data bus width that was defined by $\mathsf{SET_BUS_WIDTH}$ command.

Table14-1:DAT_BUS_WIDTH

DAT_BUS_WIDTH	Bus Width
'00'	1 bit(default)
'01'	Reserved
ʻ10'	4 bit width
'11'	Reserved

• SECURED_MODE

Indicates whether card is in secure mode operation.

T 1 1			NAODE
lable	4-2:SEC	JRED	MODE

SECURED_MODE	Secured Mode Status
'0'	NOT Secured Mode
'1 '	Secured Mode

• SD_CARD_TYPE

SD Card type described here.(Various SD types to be defined in the future.)

SD_CARD_TYPE	SD Card Type
'0000'h	SD Memory Card

SIZE_OF_PROTECTED_AREA

Show the size of protected area.

4GB: 32,768 KB 8GB: 49,152 KB

\cdot SPEED_CLASS

This 8-bit field indicates the Speed Class.

Table14-4:SPEED_CLASS CLASS Speed Class

SPEED_CLASS	Speed Class
00h	Class 0
01h	Class 2
02h	Class 4
03h	Class 6
04h – FFh	Reserved

4GB/8GB: Class 4

· PERFORMANCE_MOVE

This 8-bit field indicates Performance of move and the value can be set by 1 [MB/sec] step.

PERFORMANCE_MOVE	Performance of Move	
00h	Not Defined	
01h	1 [MB/sec]	
02h	2 [MB/sec]	
	•••••	
FEh	254 [MB/sec]	
FFh	Infinity	

Table14-5:PERFORMANCE MOVE

4GB/8GB: 2 [MB/sec]

$\cdot AU_SIZE$

This 4-bit field indicates AU Size and the value can be selected in power of 2 from 16 KB.

Table14	-6:AU_SIZE
AU_SIZE	Size of AU
0h	Not Defined
1h	16 KB
2h	32 KB
3h	64 KB
4h	128 KB
5h	256 KB
6h	512 KB
7h	1 MB
8h	2 MB
9h	4 MB
Ah – Fh	Reserved

4GB/8GB: 4MB

The maximum AU size, depends on the card capacity, is defined in Table 14-7.

Table14-7: Maximum AU_SIZE

Capacity	16 MB - 64 MB	128 MB-256 MB	512 MB	1 GB – 32 GB
Maximum AU Size	512 KB	1 MB	2 MB	4 MB

Application Notes:
The host should use the maximum AU Size (4 MB) to determine host buffer size.
The host can treat multiple AUs combined as one unit.

· ERASE_SIZE

This 16-bit field indicates N_{ERASE} . When N_{ERASE} numbers of AUs are erased, the timeout value is specified by ERASE_TIMEOUT. The host should determine proper number of AUs to be erased in one operation so that the host can indicate progress of erase operation.

ERASE_SIZE	Erase Size
0000h	Erase Time-out Calculation is not supported.
0001h	1 AU
0002	2 AU
0003	3 AU
•••••	
FFFFh	65535 AU

Table14-8: ERASE_SIZE

4GB/8GB: 512AU

· ERASE_TIMEOUT

This 6-bit field indicates the T_{ERASE} and the value indicates erase timeout from offset when multiple AUs are erased as specified by ERASE_SIZE. The host can determine timeout for any number of AU erase by the Equation below.

Erase Time-out of X AU = $T_{ERASE}/N_{ERASE} \times X + T_{OFFSET}$

Table14-9: ERASE TIMEOUT

ERASE_TIMEOUT	Erase timeout
00	Erase Time-out Calculation is not supported.
01	1 [sec]
02	2 [sec]
03	3 [sec]
63	63 [sec]

4GB/8GB: 42 [sec]

· ERASE_OFFSET

This 2-bit field indicates the T_{OFFSET} and one of four values can be selected. The erase offset adjusts the line by moving in parallel on the upper side. This field is meaningless if ERASE_SIZE and ERASE_TIMEOUT are set to 0.

ERASE_OFFSET	Erase offset				
0h	0 [sec]				
1h	1 [sec]				
2h	2 [sec]				
3h	3 [sec]				

Table14-9: ERASE OFFSET

4GB/8GB: 2 [sec]

7.3. Logical Format

Toshiba SD card is formatted before shipping compliant to the SD Card FILE SYSTEM SPECIFICATION. Following parameters may be changed if the host system is not compliant with the SD Card Format Specification. The logical format parameters are described in the Table 15, 16, 17, 18. The data of the logical format is described in Appendix 3-1, 3-2, 3-3, 3-5.

7.3.1. SD card Capacities

Item	Card Capacities					
	4GB		8GB			
	Sector KB Sector KB		Sector	KB		
Whole Capacity	7,929,856	3,964,928	15,826,944	7,913,472		
User Data Area Size	7,864,320	3,932,160	15,728,640	7,864,320		
Protected Area Size	65,536	32,768	98,304	49,152		

Table 15: SD Card capacities

7.3.2. SD card System information

Table.16: SD card System information

Item		Card Capacities		
		4GB	8GB	
User Data Area	Data Boundary unit size (KB)	4,096		
	Cluster Size(KB)	32		
Protected Area	Data Boundary unit size (KB)	16		
	Cluster Size(KB)	16		

7.3.3. MBR, Boot Sector parameters

Table. 17: Master Boot Record a Partition Table

BP	Data Length	Field Name	Contents			
			4GB	8GB		
0	446	Master Boot Record	All 0x00			
446	16	Partition Table(partition1)	Refer Table 18			
462	16	Partition Table(partition2)	All 0x00			
478	16	Partition Table(partition3)	All 0x00			
494	16	Partition Table(partition4)	All 0x00			
510	2	Signature Word	0x55(BP510),0xAA(BP511)			

Table 18: Partition Table

BP	Data Length	Field Name	Contents				
			4GB	8GB			
0	1	B00t indicator		0x00			
1	1	Starting Head	2	0x82			
2	2	Starting Sector/Starting Cylinder	3/1	3/0			
4	1	System ID		0x0B		-	
5	1	Ending Head	30	15			
6	2	Ending Sector/Ending Cylinder	30/975	60/979			
8	4	Relative Sector	8,192	8192			
12	4	Total Sector	7,856,128	15,720,448			

Table.19: Extended FDC Descriptor

BP	Data Length	Field Name	Contents		
			4GB 8GB		
0	3	Jump Command	0xEB(BP0),0x00(BP1),0x90(BP2)		
3	8	Creating System Identifier	(Card Specific 8Byte-Data)		
11	2	Sector Size		512	
13	1	Sectors per Cluster	64	64	
14	2	Reserved Sector Count	6,274	4,354	
16	1	Number of FATs		2	
17	2	Number of Root-directory Entries		0	
19	2	Total Sectors		0	
21	1	Medium Identifier		0xF8	
22	2	Sectors per FAT	0	0	
24	2	Sectors per Track	63		
26	2	Number of Sides	128	255	
28	4	Number of Hidden Sectors	8,192	8,192	
32	4	Total Sectors	7,856,128	15,720,448	
36	4	Sectors per FAT for FAT32	959	1,919	
40	2	Extension Flag	0		
42	2	FS Version		0	
44	4	Root Cluster		2	
48	2	FS Info		1	
50	2	Backup Boot Sector		6	
52	12	Reserved		All 0x0	
64	1	Physical Disk Number	0x80		
65	1	Reserved	0x00		
66	1	Extended Boot Record Signature	0x29		
67	4	Volume ID Number	(Card Specific 4Byte Data)		
71	11	Volume Label	"NO NAME "		
82	8	File System Type	"FAT32"		
90	420	(Reserved for system use)	All 0x00		
510	2	Signature Word	0x55(BP510), 0xAA(BP511)		

7.3.4 FAT

FAT1 and FAT2 are consisted with the same data. 1GB / 2GB: FAT16 .

		Table.20: FAT	
BP	4GB	8GB	
		FAT32	
0		0xF8	
1		0xFF	
2		0xFF	
3		0xFF	
4		0xFF	
5		0xFF	
6		0xFF	
7		0x0F	
8		0xFF	
9		0xFF	
10		0xFF	
11		0x0F	
12		0x00	
		0x00	
End		0x00	

7.3.5. Root Directory Entries

Initial values are All "0x00".

7.3.6. User Data Area

Initial values are All "0xFF".

8. Others: Limited Conditions, SD Specification Compliance

1) Non Supported Registers:

DSR Register (Optional register: PHISYCAL LAYER SPECIFICATION 5.6)

2) Non Supported Functions:

Programmable Card Output Driver (Optional in PHYSICAL LAYER SPECIFICATION 6.5) Card 's Internal Write Protect (Optional in PHYSICAL LAYER SPECIFICATION 4.3.5.)

3) Non Specified Command:

CMD4 SET_DSR CMD56 GEN_CMD

9. Host System Design Guidelines

The purpose of this guideline is a reference to help the design of the SD Memory Card interface of the Host system.

The description here does not make any warranty fitness for particular host.

The implementations of the host systems are different in each system.

Please design the SD Memory Card Host systems considering the each condition.

Mandate: Mandate requirement to the Host implementation

Recommendation: Recommended Implementation, Just General Example

9.1 Error handling (Recommendation)

This section shows a reference of host's error handling for errors generated in accessing the SD card.

9.1.1 Basic processing for error handling

9.1.1.1 Definition of error handling

(1) Retry process

Retry process refers to re-issuing a command. For example if SD card fails to receive a command due to noise, the command is issued again.

(2) Recovery process

Recovery process refers to the process taken by the host when SD card normally receives a command and, during the processing the command, it detects a General Error.

(3) Host's exception handling

The exception handling refers to the process taken by the host when the SD memory card normally receives a command, and during the command processing, it detects an error other than ERROR. This problem can be resolved by neither retry process nor recovery process.

9.1.1.2 Common error handling

9.1.1.2.1 Error against command response

(1) Time-out

Run the retry process. To avoid the infinite loop, implement a retry counter in the host so that, if the retry counter expires, the exception handling starts in the host.

(2) ERROR

Following the procedure per command, run the recovery process.

(3) Other errors

If the unit and size of address fail to conform to the SD memory card specification, no such errors can be resolved with command retry, requiring the exception handling by the host.

9.1.1.2.2 Process by data response

(1) Time-out

For the multiple command, send a CMD12. Response to CMD12 shall follow the procedures defined in 9.1.1.2.1.

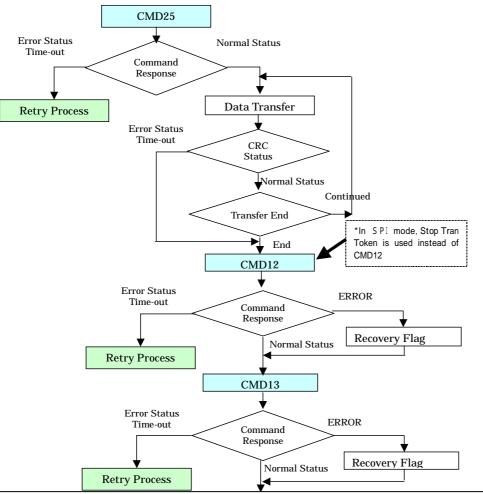
(2) Error detection

Follow the same procedure as in (1) Time-out.

9.1.1.2.3 Clearing the error bit due to CMD13

Error handling shall be completed with checking SD_STATUS of CMD13 and read clear. Procedure from error detection to CMD13 shall be closed within one error handling so that no errors remain in a response to the next command. For issues to be noted after the time-out processing, refer to 9.2.

9.1.1.3 Error handling in SD mode


9.1.1.3.1 Error handling for WRITE_MULTIPLE_BLOCK (CMD25)

This product uses the NAND type flash memory. If the NAND type memory fails to write on a page, due to the configuration scheme, such failure may affect the data in other pages within the same delete block.

(Delete block refers to the minimum unit allowed to be deleted. It consists of multiple pages)

Thus, if CMD25 (WRITE_MULTIPLE_BLOCK) causes an error in writing multiple blocks, check the number of blocks successfully written by issuing ACMD22.

If the number of blocks successfully written differs from the expected value, some blocks may contain data not normally written. Thus, write it again. Standard flow (Figure 9), retry process flow (Figure 10), recovery process flow (Figure 11), and host's exception handling flow (Figure 12) including the error recovery for CMD25 are shown below.

(1) Writing data across the OUT_OF_RANGE boundary may expire the data CRC response timer.

(2) For an error taking place in writing, judge the condition if the recovery operation is required or not.

(3) Take the recovery action after using ACMD22 to count the blocks that was written.

(4) To the repetition process of retry and recovery operations, insert a condition for breaking the infinite loop.

Figure 9 Standard flow including the CMD25 error recovery process

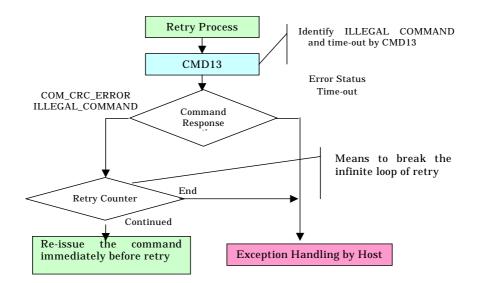


Figure 10 Retry process flow

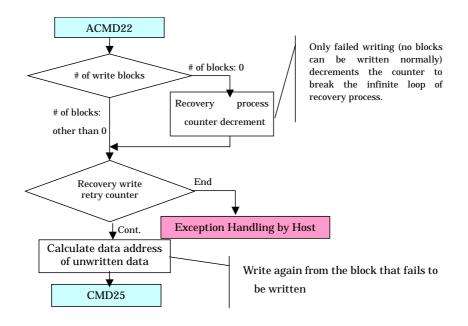


Figure 11 Recovery write flow

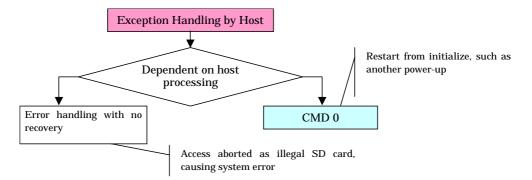


Figure 12 Flow of exception handling by host

9.1.1.3.2 Error handling for READ _MULTIPLE_BLOCK CMD18

Notes on CMD18 operations are listed below.

- (1) Attempting to read the final block may cause OUT_OF_RANGE. In such case, ignore the OUT_OF_RANGE.
- (2) If CARD_ECC_FAILED occurs, retry reading.
- (3) Retry process shall follow Figure 13.
- (4) Read recovery process shall follow Figure 14.

Figure 13 Standard flow including CMD18 error recovery process

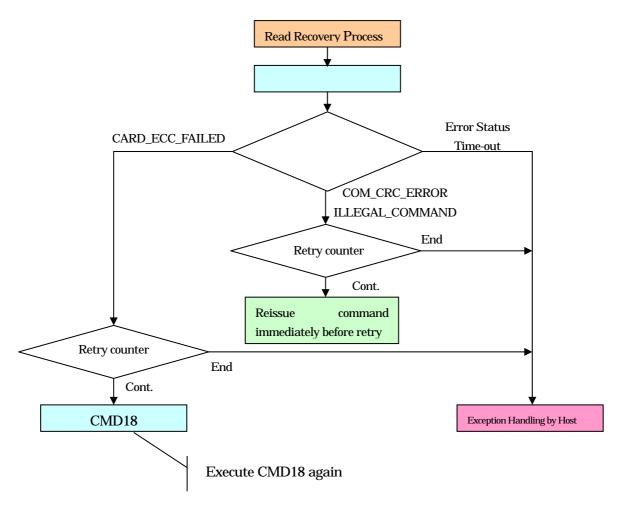
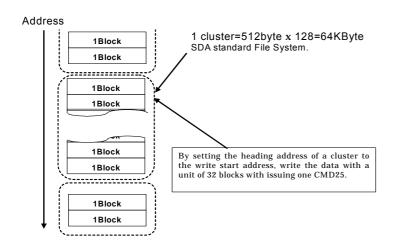
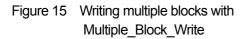


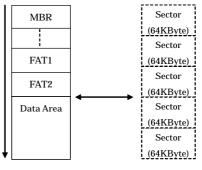
Figure 14 Read retry process flow of CMD18

9.2 Efficient Data Writing to SD Memory Card (Recommendation)

To control the SD memory card with a higher speed and lower power consumption, it is recommended that Multiple_Block_Write should be used as a command for writing data and the size of data written by each command should be the FAT cluster size×n (n: integer).


9.2.1. WRITE_SINGLE_BLOCK and WRITE_MULTIPLE_BLOCK


WRITE_SINGLE_BLOCK (CMD24) is a command used to write data of 512Bytes, which is suitable for writing comparatively small capacity of data (512byte:SingleBlock) such as updating mainly a part of File System (e.g. FAT). * 1


On the other hand, WRITE_MULTIPLE_BLOCK (CMD25) is a command for writing data to blocks that have consecutive addresses per command, which is suitable to write a large capacity of data (e.g. data section in a file). Using WRITE_MULTIPLE_BLOCK to write data with a cluster unit (512Byte×128Block=64KByte) in the file system (Figure 15) is an efficient access to the flash memory, providing a higher-speed writing compared to writing the same capacity of data with Single_Block_Write (*2). In addition, this command decreases internal processes in the SD memory card, reducing the power consumption for writing a block. By avoiding the issuing command per 512 bytes as in WRITE_SINGLE_BLOCK, software processes in the host device become faster. For this operation, check that the sectors in the SD memory card and file system have compatibility as described in Figure 16.

For writing the File System (e.g. FAT Table), it is recommended to update data of minimum amount with collective units. Updating every time when the cluster chain changes frequently causes writings of small amount of data, degrading the write performance.

- *1: Writing a large amount of data per block with WRITE_SINGLE_BLOCK causes updating the card system so to reliably store the 512Byte data in the flash memory, as a result, lowering the write performance and increasing the power consumption.
- *2: If consecutive multiple clusters are available, efficient writing is obtained by writing 32Block (16kB)×n (n = integer).

Heading address of data area should match with the heading of 64Kbyte boundary of SD logical address. If unmatched, the performance is lowered. The boundaries match if conforming to the SDA Format.

Figure 16 Matching between logical address and file system

9.2.2 Processing flow of WRITE_MULTIPLE_BLOCK

Figure 17 shows a flow chart of writing using WRITE_MULTIPLE_BLOCK command.

After issuing CMD25 and analyzing the response, write data of 512Bytes is output. Thereafter, while checking that CRC status sent from a card is normal, send the subsequent block. If the final block is sent, send Stop_Tran command (CMD12) to close the process.

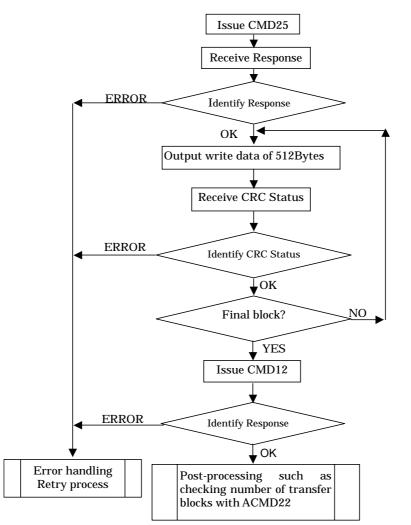


Figure 17 Write flow of WRITE_MULTIPLE_BLOCK processing

9.2.3 Power control of SD memory card (Recommended)

SD memory card needs the initialization time of up to 1 second *4 for power –up. In other words, once the power is turned off, the initialization time is consumed before the next read/write processes, lowering the performance. Thus, it is recommended that normally, SD slot is being turned on and the power is turned off after SD memory card has no accesses for certain duration. If SD card has no accesses, it enters the stand-by mode for saving the power consumption.

* 4: Specified in the SD Physical Specification.

Reactivate the SD memory card

In reactivating the SD memory card (turn off and on mainly for reducing the power consumption) from the host device, check in advance that the power line reaches the GND level then turn it on. If the time from power-off to power-on is too short, resetting the card may not occur normally. On the specification, power off must keep the voltage of 0.5[V] or lower for 0.25[msec] at least.

The figure below illustrates undesired and recommended cases of power control. In developing the host devices, check the power control to prevent the undesired case.

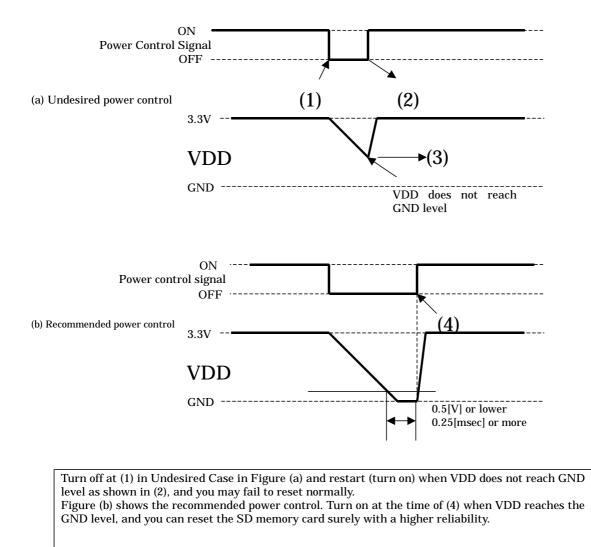


Figure 18 Power control

9.3. Retry after Memory write (Mandate)

Please issue the ACMD22 and check written blocks if it occurs error by checking the written blocks after Memory write. (CMD25: WRITE_MULTIPLE_BLOCK)

Please retry CMD25 blocks if written blocks is different from your expectation.

Background

The Flash Memory used in this card has possibility of Memory Write (Program) Error. If the Memory Write Error occurs in some memory page, the Write error may impacts other pages in the same block.

9.4. SPI-Mode initialization (Mandate)

SD Card shall be initialized by ACMD41. Do NOT use CMD1 for SPI-Mode initialization.

9.5.SPI-Mode RSV pin Pull up(Mandate)

RSV(#8,#9 in SPI Mode) shall be pulled up by 10-100k-ohm resistors. (See **6.1. SD Card Pins**)

9.6. Prohibition during Write (Mandate)

Do not turn off the power or remove the SD Memory Card from the slot before read/write/ mutual authentication operation is complete. Avoid using the SD Memory Card when the battery is low. Power shortage, power failure and/or removal of the SD Memory Card from the slot before read/write/mutual authentication operation is complete will cause malfunction of the SD Memory Card, loss of data and/or damage to data.

Please comment and inform this prohibition to the end users in proper way. (Manual or Instructions)

9.7. Process after Timeout in case of Read or Write (Recommendation)

If there are no-response after the timeout passed in case of read or write (Recommendation), please issue the CMD12(Stop Transmission) and stop the data transfer to prevent the host stuck on waiting for the response.

(Reference : 7.3.3. Data Token, 7.3.4. Data Error Token of SD PHYSICAL LAYER SPECIFICATION.)

In case of SPI mode, there are some restrictions regarding to access the out of range boundary.

- Response error (*1) will be occurred when host issue CMD12 over the out of range boundary under WRITE_MULTIPLE (CMD25, ACMD25) action. Host should neglect CMD12 error status.
- 2) This maybe occurred when SD CLK is low frequency.

In case of out of range token maybe duplicated, please check case (a) and case (b) when issue CMD12 after reading before the boundary using READ_MULTIPLE (CMD18, ACMD18).

- (a) Response error maybe occurred (*1)
- (b) Response of CMD12 maybe not issued.
- Re-issue CMD12, then next command can be received
- Neglect the response of re-issue CMD12

*1: Response Error Descriptions

➢ If CRC Check is On.

Com CRC Error is responded.

➢ If CRC Check is Off.

In case of 1) above, R1=0x44(Parameter Error & Illegal Command) . In case of 2) above, R1=0x44(Illegal Command) .

9.8. Host Timeout Setup (Recommendation)

The timeout value is recommended as below. (Table. 15.)

The memory Erase function requires the longest time before the Card Response.

The erase time for Memory Block is also included for the Timeout value in the Data erase operation in the SD Memory Card. (Table. 16)

The Host system should chose the appropriate block size considering the erase time.

Condition	Recommended Value (Max.)
Waiting for the CMD Response	64cycles
Read Data output after issue the Commands	100ms
Busy Status Change	1s

Table15:Recommended Time out value

Table16:Erase time reference value

	The Host system should chose the appropriate block size considering the erase time.
4GB	
8GB	

NOTE: The Value in this table is Reference for setting the timeout value.

9.9. SD Command (Mandate)

1) CMD0 continuously issue

Do NOT continue the CMD0 with 1Pin(CD/DAT3)='Low' just after CMD0 or the SD Card initialized in SPI mode. In case of 1 pin (CD/DAT3)="Low", it means SPI mode so be careful to the duration of CMD0 issue. Please choose the appropriate timing interval for CMD0 to prevent this problem. The interval is related with the pull up Resister value. of the host side.

2) After the Security Read Command

Please issue the CMD13 to ensure the status change to the transmission state or wait more than 100 us, after issue the ACMD18 or ACMD43.

3) CMD12(SD mode) or 'Stop Tran Token'(SPI mode) after Multiple Block Write Command

When the CMD12(STOP_TRANSMISSION, SD mode) or 'Stop Tran Token' (SPI mode) is issued after Multiple Block Write Command (CMD25, ACMD25), please issue the CMD12 or 'Stop Tran Token' immediately(*) after the last data block, to complete the data write transaction soon.

(*) It should be within 400 usec after the end of BUSY status for the last data block.

4) Time Interval between successive SD commands

Time interval between the BUSY end of the SD command and the start bit of the next SD command should be more than 15usec.

If the time interval is less than 15usec, SD bus error or device operation error may occur occasionally.

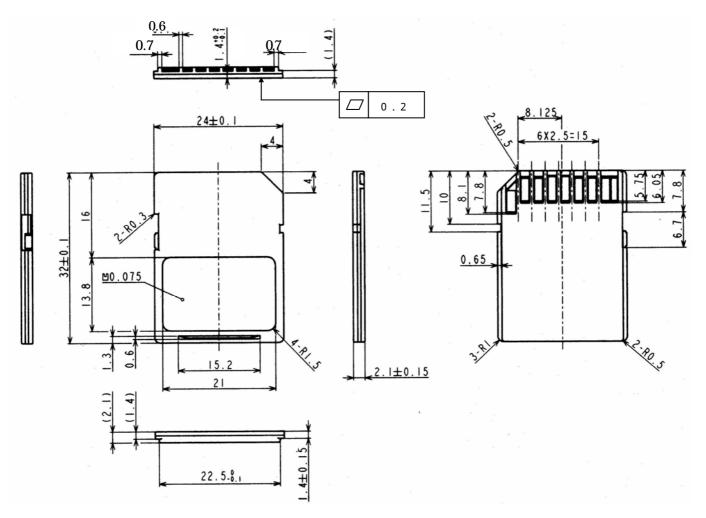
9.10. Pull Up resistors (Recommendation)

CMD and DAT [3:0] can pull up with 10-100k ohm resistors by the host side. Pleased disable the Card-Internal pull up on CD by ACMD42 before access. (Refer Fig. 7)

9.11. Write/ Erase Size management: (Recommendation)

1) Erase Unit

The erase size is recommended to using Boundary unit indicated by Erase Sector size below.


The erase unit size is given as below.

Erase Sector Size = Block_length x (SECTOR_SIZE) = 512 Byte x 128 -block= 64 K Byte (Block_length can calculate from WRITE_BL_LEN)

2) Faster Write

Multiple block write by command :WRITE_MULTIPLE(CMD25,ACMD25) allows faster data write.

Appendix 1. SD Card Mechanical Dimensions (Unit: mm)

Tolerance ± 0.15

Appendix 2-1: initial value of OCR Register

4GB

100																												
Field	C	C) F	٢S	V			3	8.6	-	1	.6														R	S	V	
Bit Position																1 1												
Dit Fosition	1 () 9	8	7	6	54	3	2	1	0	9	8	7	6	5	43	12	1	0	8 (7	6	5	4	3	2	1	0
Binary	* 1	0	0	0	0	0 0	1	1	1	1	1	1	1	1	1	0 0	0	0	0 0	0 0	0	0	0	0	0	0	0	0
Hexadecimal		*			С)			F			F	-			8			0			(C			(D	

2.7V - 3.6V operation

8GB

000								
Field	CRSV		3.6 - 1	.6				RSV
Bit Position					1111			
DILFUSICION	1098	7654	3210	9876	5432	1098	7654	3210
Binary	*000	0000	1111	1111	1000	0000	0000	0000
Hexadecimal	*	0	F	F	8	0	0	0

2.7V - 3.6V operation

Appendix 2-2 : initial value of CID Register

4GB																																
Field	MID		OID				PNM										PRV		PSN									MDT			CRC7	1
																			00000													
Bit Position	2222	2222	1111	1111	1100	0000	0000	9999	9999	9988	88888	8888	7777	7777	7766	66666	6666	555	55555	554	4444	44444	3333	3333	3322	22222	22222	.1111	1111	11100	00000	0000
	7654	3210	9876	5432	1098	7654	3210	9876	5432	1098	87654	3210	9876	5432	1098	37654	3210	987	65432	109	8765	43210	9876	5432	1098	37654	43210	9876	5431	21091	87654	3210
Binary	0 0 0 0	0010	0101	0100	0100	1101	0101	0011	0100	0100	00011	0000	0011	0100	0100	0111	* * * *	* * *	* * * * *	* * *	* * * *	* * * * *	* * * *	* * * *	* * * *	* * * * *	*0000	* * * *	* * * *	* * * *	* # # # #	####1
Hexadecimal	0	2	5	4	4	D	5	3	4	4	3	0	3	4	4	7	*	*	*	*	*	*	*	*	*	*	0	*	*	*	#	#

8GB

Field	MID		OID				PNM										PRV		PSN								RSV	MDT		(CRC7	1
	1111	1111	1111	1111	1111	1111	1111	0000	0000	0000	0000	0000	0000	0000	0000	00000	0000	0000	0000	000	00000	0000	0000	00000	0000	0000	0000	0000	0 0 0 0 0	0000	0000	0000
Bit Position	2222	2222	1111	1111	1 1 0 0	0000	0000	9999	9999	9988	8888	8888	7777	7777	7766	6666	6666	5555	5555	554	44444	4444	3333	33333	3322	2222	2222	1111	11111	1000	0000	0000
	7654	3210	9876	5432	1098	7654	3210	9876	5432	1098	7654	3210	9876	5432	1098	37654	3210	9876	5432	109	87654	3210	9876	54321	098	7654	3210	9876	54321	0987	7654	3210
Binary	0000	0010	0101	0100	0100	1101	0101	0011	0100	0100	0011	0000	0011	1000	0100	0111	* * * *	* * * *	* * * *	* * *	* * * * *	* * * *	* * * *	* * * *	* * * *	* * * *	0000	* * * *	* * * * *	* * *	####	# # # 1
Hexadecimal	0	2	5	4	4	D	5	3	4	4	3	0	3	8	4	7	*	*	*	*	*	*	*	*	*	*	0	*	*	*	#	#

Appendix 2-3 : initial value of CSD Register

4GB

100																																
Field	CS RS	v	TAAC		NSAC		TRAN						RWRD		C_S									RP_SIZ					FCPT			1
Bit Position	1 1 1 1 2 2 2 2 2	1111 22222	1 1 1 1 1 1 1 1		1 1 0 0	0000	0000	9999	9999	9988	8888	8888	7777	7777	7766	6666	6666	5555	5555	5544	4 4 4 4	4 4 4 4	3333	0000	3322	2222	2222	1111	1111	1100	0000	0000
Distant																								5432 0000								
Hexadecimal	4	0	0	E	0	0	3	2	5	В	5	9	0	0	0	0	1	D	F	F	7	F	8	0	0	A	4	0	0	0	#	#

8GB

Field	CS RSV		TAAC	1	NSAC		TRAN	SPEED	CCC			READ_	BRWRD	RSV	C_S	SIZE					R E SE	CTOR_S	SIZWP_G	RP_SIZ	WRSVF	2W WR	ITEWR	SV	FCPT	FIL RS	CRC7	1
	11111	111	11111	111	1111	1111	1111	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	00000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000	0000
Bit Position	22222	222	11111	111	1100	0000	0000	9999	9999	9988	8888	8888	7777	7777	7766	6666	6666	5555	5555	5544	4444	4 4 4 4	3333	3333	3322	2222	2222	1111	1111	1100	$0 \ 0 \ 0 \ 0$	0000
	76543	210	98765	6432	1098	7654	3210	9876	5432	1098	7654	3210	9876	5432	1098	7654	3210	9876	5432	1098	87654	3210	9876	5432	1098	7654	3210	9876	5432	1098	7654	3210
Binary	01000	000	00001	110	0 0 0 0	0 0 0 0	0011	0010	0101	1011	0101	1001	0 0 0 0	0000	0000	0000	0011	1011	1111	1111	0111	1111	1000	0000	0 0 0 0	1010	0100	0 0 0 0	0000	0 0 0 0	# # # #	# # # 1
Hexadecimal	4	0	0	Е	0	0	3	2	5	В	5	9	0	0	0	0	3	В	F	F	7	F	8	0	0	Α	4	0	0	0	#	#

Appendix 2-4 : initial value of SCR Register

4GB

4GB																
		ISD_SPI								ed for m						
																0000 3210
Binary	0 0 0 0	0010	1011	0101	0 0 0 0	0 0 0 0	0000	0 0 0 0	0 0 0 0	0000	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0000
Hexadecimal	0	2	В	5	0	0	0	0	#	#	#	#	#	#	#	#

8GB

Field	SCR_S	ISD_SPI	ED SD_S	SD_BU	RSV				reserve	ed for m	anufact	urer us	age			
Bit Position	6666	5555	5555	5544	4444	4444	3333	3333	3322	2222	2222	1111	1111	1 1 0 0	0000	0000
DILFUSILIUI	3210	9876	5432	1098	7654	3210	9876	5432	1098	7654	3210	9876	5432	1098	7654	3210
Binary	0000	0010	1011	0101	0000	0 0 0 0	0000	0000	0000	0000	0000	0 0 0 0	0000	0 0 0 0	0000	0000
Hexadecimal	0	2	В	5	0	0	0	0	#	#	#	#	#	#	#	#

Appendix 2-5: initial value of SD Status

DASRSV	SD CARD T	YPE	SIZE OF PROT	ECTED AREA			ş	SPEED C	LASSPERF	ORMANC	AU SIZ RS	V EARSE	E SIZE		E	RASE TIME		<u></u>	
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5					4 4 4 4 4 4	4 4 4 4 4				4 4 4 4 4 4	44444		-	4444		444444	-	0000000	000000000
1 1 0 0 0 0 0 0 0 0 0 0	9999999999998	38888888888	777777777	77666666	6666555	555555	55444	44444	444333	333333	3 2 2 2 2 2	222222	1111	1111	11000	000000	Abbreviatio	1111111	100000000
109876543210	9 8 7 6 5 4 3 2 1 0 9	876543210	987654321	109876543	3210987	765432	10987	76543	210987	654321	09876	543210	9876	5432	10987	654321	[399:018]	7654321	098765432
0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 1 0 0		0 0 0 0 0 0 0		0 0 0 0 0	0000	010000	0 0 0 1 0 1	00100	0 0 0 0 0 0	0010	0000	00001	010101		0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0
0 0 0	0 0 0	0 0	0 2	0 0	0 0	0	0	0	2 0	2	9 (0 0	2	0	0	A A	T	0	0 0 0
			. <u>.</u> .									•							
)	
																		/ 1	
DAISIRSV	SD CARD T	YPE	SIZE OF PROT	ECTED AREA				SPEED C		ORMANC	AU SIZ RSV	V EARSE	E SIZE		E	RASE TIMR		, 1	
DA \$ RSV 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	SD_CARD_T		SIZE_OF_PROT		4 4 4 4 4 4	44444		-	LASSPERF				-	4444		RASE_TIMR 4 4 4 4 4	Abbreviatio	0000000	0000000000
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4	1 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4	1 4 4 4 4 4 4 4			44444	44444	4 4 4 4 4 4	44444	44444	4 4 4 4 4 4	4444		4444	4 4 4 4 4 4	Abbreviatio n	P	0000000000
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9 9	1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	666655	555555	4 4 4 4 4 5 5 4 4 4	44444	4 4 4 4 4 4 4 4 4 4 3 3 3 3	4 4 4 4 4 4 3 3 3 3 3 3 3	4 4 4 4 4 3 3 2 2 2 2 2	4 4 4 4 4 4 2 2 2 2 2 2 2	4444	1111	4 4 4 4 4 1 1 0 0 0	4 4 4 4 4 4 0 0 0 0 0 0 0	Abbreviatio ⁴ 3 n ⁰ 9 [399:018]	1111111	100000000
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9	4 4 4 4 4 4 4 4 4 4 3 8 8 8 8 8 8 8 8 8 8 9 8 7 6 5 4 3 2 1 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 7 7 6 6 6 6 6 6 6 1 0 9 8 7 6 5 4 3	6 6 6 6 5 5 5 3 2 1 0 9 8 5	5 5 5 5 5 5 5 7 6 5 4 3 2	4 4 4 4 4 5 5 4 4 4 1 0 9 8 7	4 4 4 4 4 4 4 4 4 4 7 6 5 4 3	4 4 4 4 4 4 4 4 4 4 3 3 3 2 1 0 9 8 7	4 4 4 4 4 4 3 3 3 3 3 3 3 6 5 4 3 2 1	4 4 4 4 4 3 3 2 2 2 2 2 0 9 8 7 6	4 4 4 4 4 4 2 2 2 2 2 2 2 2 5 4 3 2 1 0	4 4 4 4 1 1 1 1 9 8 7 6	1 1 1 1 5 4 3 2	4 4 4 4 4 1 1 0 0 0 1 0 9 8 7	4 4 4 4 4 4 0 0 0 0 0 0 0 0 6 5 4 3 2 1	Abbreviatio n [399:018] 0 9	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9	4 4 4 4 4 4 4 4 4 4 3 8 8 8 8 8 8 8 8 8 8 9 8 7 6 5 4 3 2 1 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 7 7 6 6 6 6 6 6 6 1 0 9 8 7 6 5 4 3	6 6 6 6 5 5 5 3 2 1 0 9 8 5	5 5 5 5 5 5 5 7 6 5 4 3 2	4 4 4 4 4 5 5 4 4 4 1 0 9 8 7	4 4 4 4 4 4 4 4 4 4 7 6 5 4 3	4 4 4 4 4 4 4 4 4 4 3 3 3 2 1 0 9 8 7	4 4 4 4 4 4 3 3 3 3 3 3 3 6 5 4 3 2 1	4 4 4 4 4 3 3 2 2 2 2 2 0 9 8 7 6	4 4 4 4 4 4 2 2 2 2 2 2 2 2 5 4 3 2 1 0	4 4 4 4 1 1 1 1 9 8 7 6	1 1 1 1 5 4 3 2	4 4 4 4 4 1 1 0 0 0 1 0 9 8 7	4 4 4 4 4 4 0 0 0 0 0 0 0 0 6 5 4 3 2 1	Abbreviatio n [399:018] 0 9	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	100000000
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9	4 4 4 4 4 4 4 4 4 4 3 8 8 8 8 8 8 8 8 8 8 9 8 7 6 5 4 3 2 1 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 7 7 6 6 6 6 6 6 6 1 0 9 8 7 6 5 4 3	6 6 6 6 5 5 5 3 2 1 0 9 8 5	5 5 5 5 5 5 5 7 6 5 4 3 2	4 4 4 4 4 5 5 4 4 4 1 0 9 8 7	4 4 4 4 4 4 4 4 4 4 7 6 5 4 3	4 4 4 4 4 4 4 4 4 4 3 3 3 2 1 0 9 8 7	4 4 4 4 4 4 3 3 3 3 3 3 3 6 5 4 3 2 1	4 4 4 4 4 3 3 2 2 2 2 2 0 9 8 7 6	4 4 4 4 4 4 2 2 2 2 2 2 2 2 5 4 3 2 1 0	4 4 4 4 1 1 1 1 9 8 7 6	1 1 1 1 5 4 3 2	4 4 4 4 4 1 1 0 0 0 1 0 9 8 7	4 4 4 4 4 4 0 0 0 0 0 0 0 0 6 5 4 3 2 1	Abbreviatio n [399:018] 0 9	<u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 9 9 9 9	4 4 4 4 4 4 4 4 4 4 3 8 8 8 8 8 8 8 8 8 8 9 8 7 6 5 4 3 2 1 0	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	4 4 4 4 4 4 4 4 7 7 6 6 6 6 6 6 6 1 0 9 8 7 6 5 4 3	6 6 6 6 5 5 5 3 2 1 0 9 8 5	5 5 5 5 5 5 5 7 6 5 4 3 2	4 4 4 4 4 5 5 4 4 4 1 0 9 8 7	4 4 4 4 4 4 4 4 4 4 7 6 5 4 3	4 4 4 4 4 4 4 4 4 4 3 3 3 2 1 0 9 8 7	4 4 4 4 4 4 3 3 3 3 3 3 3 6 5 4 3 2 1	4 4 4 4 4 3 3 2 2 2 2 2 0 9 8 7 6	4 4 4 4 4 4 2 2 2 2 2 2 2 2 5 4 3 2 1 0	4 4 4 4 1 1 1 1 9 8 7 6	1 1 1 1 5 4 3 2	4 4 4 4 4 1 1 0 0 0 1 0 9 8 7	4 4 4 4 4 4 0 0 0 0 0 0 0 0 6 5 4 3 2 1	Abbreviatio n [399:018] 0 9	1 1 1 1 1 1 1 1 7 6 5 4 3 2 1 0 0 0 0 0 0 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Appendix 3-1 : Memory Map and Dump Data of User Data Area

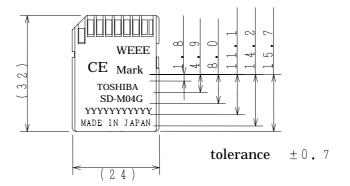
Last address of this memory map indicates "actual last address + 1".

(1)4GB Card

		ADDRESS 00 01 02 03 04 05 06 07 08 0	09 0A 0B 0C 0D 0E 0F
		(MBR and Partition Ta	able)
0x0000000	Master Boot Record and	0000000 00 00 00 00 00 00 00 00 00 00	00 00 00 00 00 00 00
	Partition Table(4096KB)	* (AII 0x00)	
		00001b0 00 00 00 00 00 00 00 00 00 00 00 00 0	0 00 00 00 00 00 02
0x0400000	Partition Boot Sector(3137KB)	\ 00001c0 03 01 0b 1e de cf 00 20 00 0	0 00 00 77 00 00 00
0x0710400	FAT1(479.5KB)	00001d0 00 00 00 00 00 00 00 00 00 00 00	
		* (AII 0x00)	
0x0788200	FAT2(479.5KB)		00 00 00 00 00 55 aa
		(
0x0800000	Root Directory(32KB)	0000200 ff ff ff ff ff ff ff ff ff	
		() (AII 0xff)	
0x0808000	User Data(3923936KB)	(All oxil) (Partition Boot Secto	or)
		0400000 eb 00 90 xx xx xx xx xx xx	,
		0400010 02 00 00 00 00 f8 00 00 3f	
		0400010 02 00 00 00 18 00 00 31 0 0400020 00 e0 77 00 bf 03 00 00 00	
0xF0000000			
		0400040 80 00 29 xx xx xx 4e 4f 3	
			20 00 00 00 00 00 00
		() (* (AII 0x00)	
		() 07103f0 00 00 00 00 00 00 00 00 00 00 00 00 0	00 00 00 00 00 00 55 aa
		() (FAT1)	
		0710400 f8 ff ff 0f ff ff 0f ff	ff ff 0f 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 00	ff ff 0f 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 0 * (All 0x00)	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 * (All 0x00) (FAT2)	ff ff Of OO OO OO OO OO OO OO OO OO OO OO OO
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 * (All 0x00) (FAT2) 0788200 f8 ff ff 0f ff ff 0f ff	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 * (All 0x00) (FAT2)	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 * (All 0x00) (FAT2) 0788200 f8 ff ff 0f ff ff 0f ff	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 * (All 0x00) (FAT2) 0788200 f8 ff ff 0f ff ff 0f ff 0788210 00 00 00 00 00 00 00 00 00 00	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00 00 00 00 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 * (All 0x00) (FAT2) 0788200 f8 ff ff 0f ff ff ff 0f ff 0788210 00 00 00 00 00 00 00 00 00 * (All 0x00)	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00 00 00 00 00 00 00 00)
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 0 * (All 0x00) (FAT2) 0788200 f8 ff ff 0f ff ff ff 0f ff 0788210 00 00 00 00 00 00 00 00 00 * (All 0x00) (Root Directory	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00 00 00 00 00 00 00 00)
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 0 * (AII 0x00) (FAT2) 0788200 f8 ff ff 0f ff ff ff 0f ff 0788210 00 00 00 00 00 00 00 00 00 * (AII 0x00) (Root Directory 0800000 00 00 00 00 00 00 00 00 00	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00 00 00 00 00 00 00 00) 00 00 00 00 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 0 * (All 0x00) (FAT2) 0788200 f8 ff ff 0f ff ff ff 0f ff 0788210 00 00 00 00 00 00 00 00 00 0 * (All 0x00) (Root Directory 0800000 00 00 00 00 00 00 00 00 0 * (All 0x00)	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00 00 00 00 00 00 00 00) 00 00 00 00 00 00 00 00
		0710400 f8 ff ff 0f ff ff 0f ff 0710410 00 00 00 00 00 00 00 00 00 00 * (AII 0x00) (FAT2) 0788200 f8 ff ff 0f ff ff ff 0f ff 0788210 00 00 00 00 00 00 00 00 00 * (AII 0x00) (Root Directory 0800000 00 00 00 00 00 00 00 00 00 * (AII 0x00) (User Data)	ff ff 0f 00 00 00 00 00 00 00 00 00 00 00 ff ff 0f 00 00 00 00 00 00 00 00 00 00 00) 00 00 00 00 00 00 00 00

"xx" depends on SD card.

(1)8GB Card


ADDRESS 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F -----(MBR and Partition Table)-----0x0000000 Master Boot Record and Partition Table(4096KB) * (AII 0x00) Partition Boot Sector(2177KB) 0x0400000 00001c0 03 00 0b 0f fc d3 00 20 00 00 00 e0 ef 00 00 00 FAT1(959.5KB) 0x0620400 * (AII 0x00) FAT2(959.5KB) 0x0710200 -----(reserved)------Root Directory(32KB) 0x0800000 * (All Oxff) 0x0808000 User Data(7856096KB) -----(Partition Boot Sector)-----0400000 eb 00 90 xx xx xx xx xx xx xx xx 00 02 40 02 11 0400010 02 00 00 00 00 f8 00 00 3f 00 ff 00 00 20 00 00 0400020 00 e0 ef 00 7f 07 00 00 00 00 00 00 02 00 00 00 0x1E0000000 0400040 80 00 29 xx xx xx xx 4e 4f 20 4e 41 4d 45 20 20 0400050 20 20 46 41 54 33 32 20 20 20 00 00 00 00 00 00 * (AII 0x00) -----(FAT1)-----* (AII 0x00) -----(FAT2)------* (AII 0x00) -----(Root Directory)------* (AII 0x00) -----(User Data)------* (All Oxff) -----(Last Sector)------

"xx" depends on SD card.

SD-M04G7B7 (VDC),SD-M04G7B7 (VDCCN), SD-M04G7B7K (VDC) SD-M08G7B7 (VDC),SD-M08G7B7 (VDCCN), SD-M08G7B7K (VDC)

Appendix4-1 : Laser marking

CE part:

CE

WEEE Mark:

1LINE: SPACE

2LINE: TOSHIBA

3LINE:

CAPACITY	MODEL NAME	Origin Country	LASER MARKING
4GB	SD-M04G7B7 (VDC)	JAPAN	SD-M04G
4GB	SD-M04G7B7 (VDCCN)	JAPAN	SD-M04G
4GB	SD-M04G7B7K (VDC)	TAIWAN	SD-M04G
8GB	SD-M08G7B7 (VDC)	JAPAN	SD-M08G
8GB	SD-M08G7B7 (VDCCN)	JAPAN	SD-M08G
8GB	SD-M08G7B7K (VDC)	TAIWAN	SD-M08G

4LINE: LOT NUMBER 11LETTERS first 2letters : year second 2letters :weekly code others : lot number

5LINE: MADE IN JAPAN/MADE IN TAIWAN

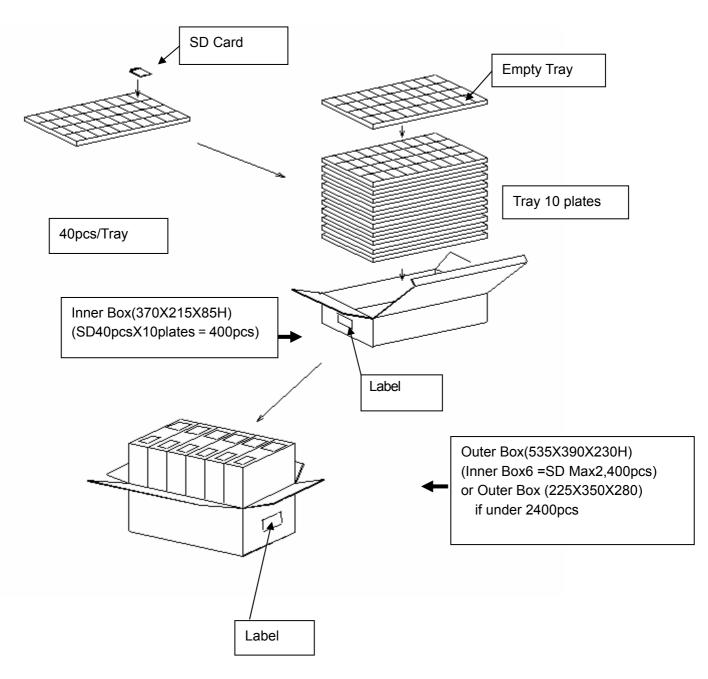
Appendix4-2 : For Instruction Manual

Please comment and inform this prohibition to the end users in proper way. (Manual or Instructions).

Notes on usage

- (1)The SD memory card includes a built-in non-volatile semiconductor memory (NAND type Flash EEP-ROM).Under normal circumstances data stored on the SD memory card cannot be corrupted or lost. If the card is used in ways other than described in these instruction manual, however, data could be corrupted or lost. Please note that **** Corporation accepts no responsibility for corruption or loss of data stored on the SD memory card, regardless of the type or cause of the problem or damage.
- (2)The SD memory card is a storage medium that conforms to SDMI (Secure Digital Music Initiative) standards for protecting the rights of copyright holders. Based on SD memory card specifications, part of the memory is used as the system area, so the actually usable memory capacity is lower than the indicated capacity.
- (3)The SD memory card is already formatted. If you should want to reformat it, however, do so on a device including the SD logo mark and equipped with an SD memory card formatting function. Formatting the SD memory card on other devices (computers, etc.) may result in problems, such as the inability to read or write data.
- (4)Routine performance of backing-up data is strongly recommended.

Exemption Clauses


- (1)**** Corporation bears no responsibility in the case of damages arising from earthquakes, fire not liable to Toshiba Corporation, operation by third parties, other accidents, or use under abnormal conditions including erroneous or improper operation and other problems.
- (2)****Corporation bears no responsibility for incidental damages (lost profit, work interruption, corruption or loss of the memory contents, etc.) arising from the use of or the inability to use this unit.
- (3)**** Corporation accepts no liability whatsoever for any damages arising from not having followed the descriptions in this Instruction Manual.
- (4)**** Corporation accepts no liability whatsoever for any damages arising from malfunctions arising from combination with equipment or software that is not related to **** Corporation.

Cautions

- (1)Keep out of reach of small children.
- (2)Do not touch or have metal objects touch the terminals or connectors. Static electricity may cause malfunction, and/or loss of data.
- (3)Do not bend or force the SD Card into the slot. Do not drop the SD Card onto hard surface. Doing so may cause malfunction, and/or loss of data.
- (4)Do not disassemble, transform and/or alter the SD Card.
- (5)Keep away from dampness.
- (6)Do not turn off the power or remove the SD Memory Card from the slot before read/write operation is complete. Avoid using the SD Memory Card when the battery is low. Power shortage, power failure and/or removal of the SD Memory Card from the slot before read/write operation is complete will cause malfunction of the SD Memory Card, loss of data and/or damage to data.
- (7)The SD Memory Card is already formatted. However, if you should want to reformat it, make a back-up copy of the data stored on the SD Card prior to reformatting. WARNING: Reformatting clears all the data on the SD Card.

Appendix5-1 : Package

Appendix5-2: LABEL DETAIL (400pcs BOX、 2,400pcs BOX)

MODEL NAME : SD-M04G7B7 (VDCCN) 2006/30WEEK 2400pcs TYPE SD-M04G7B7 ADD.C VDCCN Q'TY 2400PCS Week CODE+3LETTERS+Q'TY NOTE 0630KVZ - 2400 TD0001 Key No *Y20+++++++++++++++++++++++++++** more than 3mm SPACE at right and left TOSHIBA MADE IN JAPAN In case of SD-M04G7B7K (VDC) and SD-M08G7B7K (VDC), "MADE IN TAIWAN"

1) Model Name

Model Name	TYPE	ADD.C	Capacity
SD-M04G7B7 (VDC)	SD-M04G7B7	VDC	4GB
SD-M04G7B7 (VDCCN)	SD-M04G7B7	VDCCN	4GB
SD-M04G7B7K (VDC)	SD-M04G7B7K	VDC	4GB
SD-M08G7B7 (VDC)	SD-M08G7B7	VDC	8GB
SD-M08G7B7 (VDCCN)	SD-M08G7B7	VDCCN	8GB
SD-M08G7B7K (VDC)	SD-M08G7B7K	VDC	8GB

2) LOT

For the control of production or shipment Different by production and shipment

3) Quantity

* Inner Box Max 400pcs (including dummy tray according to circumstances)

* Outer Box

Max 2,400pcs

(including empty box or buffer materials according to circumstances)

Appendix 6 : FACTORY, PRODUCING COUNTRY

MODEL NAME	SD-M04G7B7 (VDC)	SD-M04G7B7 (VDCCN)	SD-M04G7B7K (VDC)
	SD-M08G7B7 (VDC)	SD-M08G7B7 (VDCCN)	SD-M08G7B7K (VDC)
ASSEMBLY, TEST	TOSHIBA MISAWA MEDIA	KUNIMI MEDIA DEVICE	KINGSTON TECHNOLOGY
	DEVICES CO., LTD	CO.,LTD	CO.,
SHIPMENT	TOSHIBA YOKKAICHI	TOSHIBA YOKKAICHI	TOSHIBA YOKKAICHI
	OPERATION	OPERATIONS	OPERATIONS
PRODUCING	JAPAN	JAPAN	TAIWAN
COUNTRY			

RESTRICTIONS ON PRODUCT USE

- The information contains herein is subject to the change without notices.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.) . These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury "Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc... Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or third parties.
- SD, SDHC, miniSD & microSD logos are trade mark.
- Please use this product in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. TOSHIBA assumes no liability for the damage or losses occurring as a result of noncompliance with applicable laws and regulations.
- The products described in this document are subject to the foreign exchange and foreign trade control laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any laws and regulations.