
file allocation table - 16bit clark@hushmail.com | updates closed

forewords

this article is about fat16 with additional
comments regarding windows 98. certain things
will appear/handle differently in other oses.

special thanks go to jon fox who helped me out
on calculating the volume serial number, the
lfn checksum and making some worthy comments
while in draft form, i really appreaciate it.

overview

master boot record
sectors 1 - 62
boot record
fat 1
fat 2
root directory
sub directory
data

1 block = 512 bytes

this is a scale diagram of the start of the disk with a small fat16
partition at the beginning. this partition is just over 20mb in size,
to save space not all the data/subdir/surplus area is shown - there
would be 44,815 blocks or ~=896 lines if this part was shown
completely.

master boot record diagram

mailto:clark@hushmail.com

-> executable code
-> boot indicator
-> starting head
-> starting sector &

cylinder
-> partiton type

-> ending head
-> ending sector &

cylinder
-> the starting

sector
-> no. of sectors in

partition
-> executable

signature

1 partition entry is as follows:

and reads as:

mbr in general (=512 bytes)

the master boot record (mbr) is located in the first data sector on
the hard disk. the mbr can have upto 4 primary partitions, each entry
occupies 16 bytes. if the slot is unused, the space is filled with
00. each entry sets out the addressing parameters for the partition.
hard disks have grown considerably in size since they were first
invented, this has caused some strange addressing techniques to be
used to ensure compatibility. hard drives used to be addressed by
cylinder, head and sector (chs). as cylinders increased, instead of
addressing it literally, the addressing values became virtual.

example: 16 heads are specified on the drive and in bios, but when
opened up there were only 6 physical heads. this is converted by the
hard disks controller card to real values. however virtual chs
addressing is also limited, when these values are exceeded, logical
block addressing (lba) is used by partitions. lba is achieved by
addressing each sector on the disk by number, the first sector is 0.

executable code (=446 bytes)

this is the first piece of software that runs when a computer loads
up. it can be less than 446 bytes; the remainding bytes will filled
with 00. the bios checks for the executable signature, if absent a
hardware error is displayed, else the code is run. it looks for and
loads partition parameters in the four areas and checks that only one
is bootable. it then checks the active partition's boot record for
the executable signature before running it. if this is absent the
error: missing operating system will appear.

boot indicator (=1 byte)

determines which partition to boot from. 00 = inactive and 80 =
active
there must only be one partition marked as 80. if more than one are
marked the system will halt with the error: invalid partition table.
if none are marked the system will display a hardware error like:
operating system not found; this will vary from machine.

starting head (=1 byte)

states the starting head for the partition in hex.
eg, 01 = head 1; and another example: 3f = head 63
if these values are incorrect the system will halt with: error
loading operating system. the maximum number of heads is 256. if the
partition is in lba mode the head will be one less than the maximum.

starting sector/cylinder (=2 bytes)

states the sector and cylinder on which the partition begins. though
it looks like the first byte states the sector and the second the
cylinder in hex, this is not the case.
example: 62 sectors and 690 cylinders; from the disk read: be,b2
first convert to binary: be,b2 -> 1011 1110,1011 0010

the last 6 bits of the first byte: 11 1110 = 3e -> decimal = 62
sectors
6 bits gives a potential maximum of 63 sectors, 1 - 63 inclusively.

join the first 2 bits of the first byte with the whole second byte:
10 1011 0010 = 2b2 -> decimal = 690 cylinders
10 bits gives a potential maximum of 1024 cylinders, 0-1023
inclusively.
if these values are incorrect the system will halt with: error
loading operating system.

partition type (=1 byte)

states the type of partition, there are others, but for different
systems.
the maximum number of heads = 256, the maximum number of sectors is
63 and the maximum number of cylinder is 1024. hard disk are
formatted with 512 byte sectors. therefore the maximum partition is
1024 * 256 * 63 * 512 = 8,455,716,864. anything addressed over this
will be a lba partition.

 fat16 fat32 extended fat16lba fat32lba extended lba

visible 06 0b 05 0e 0c 0f

hidden 16 1b 15 1e 1c 1f

if a partition is marked as active and has a operating system
installed and the partition is marked as hidden the system will load
the io.sys and then prompt: type the name of the command interpreter
(eg., c:\windows\command.com) a>_

ending head (=1 byte)

as the starting head, but ending.

ending sector/cylinder (=2 bytes)

as the starting sector/cylinder, but ending.

the starting sector (=4 bytes)

this is the logical sector jump to the partition. this sector
contains the partition's boot record. from the disk:
40,03,07,01 flip -> 01,07,03,40 convert to decimal = sector
17,236,800

sectors in the partition (=4 bytes)

states the number of sectors in the partition, the last sector will
be one less than the total as the first sector is sector 0. from the
disk: f0,ae,24,00 flip -> 00,24,ae,fo convert to decimal = 2,404,080
sectors

executable signature (=2 bytes)

these two bytes indicate that the sector is executable, the system
will check for them. if incorrect a hardware error will be displayed.
example; on a toshiba satellite:
insert system disk in drive.
press any key when ready....
and on a hi-grade ultinote: operating system not found; if they are
present the code will run.

sectors 1 - 62 (=31,744 bytes)

sectors 1 - 62 inclusively are normally left
empty. applications that do use it include:
multi boot loaders like ranish advanced boot
manager. security programs such as reflex-
magnetics disknet. viruses that copy
themselves to the master boot record so that
they can load every time, sometimes move the
real mbr into this area, plus any more virus
code. full disk encryption programs and disk
translation software for very large hard disks
may also reside here.

boot record diagram

-> jumpcode
-> oem/id name
-> bytes per sector
-> sectors per

allocation
-> resevered sectors
-> no. of fats
-> root entries
-> total sectors(16)
-> media type
-> sectors per fat
-> sectors per track

-> no. of heads
-> hidden sectors
-> total sectors(32)
-> drive id
-> nt reserved
-> extended boot

signature
-> volume serial

number
-> volume/partition

name
-> fat type
-> executable

boot(strap) code
-> executable

signature

jumpcode (=3 bytes)

the offset jump to the boot(strap) executable code plus a nop. from
the disk: eb,3e,90 -> translates to: |jumpshort(to)|offset 3e|no
operation|

oem/id name (=8 bytes)

some indication to what system formatted the partition, not checked,

but set for compatibility. mswin4.0 and mswin4.1 as formatted by
windows 95 and 98 respectfully.

bytes per sector (=2 bytes)

normally set to 512 bytes; from the disk: 00,02 flip -> 02,00 convert
to decimal = 512 bytes. 1024, 2048 and 4096 are also valid, but are
not generally used.

sectors per cluster (=1 byte)

states the number of sectors per cluster. this will vary depending on
the size of the partition. example: 10 convert to decimal = 16
sectors
for hard disks:

size ranges (mb) fat type no. sectors cluster size

0 - 15 12 8 4,096 bytes

16 - 127 16 4 2,048 bytes

128 - 255 16 8 4,096 bytes

256 - 511 16 16 8,192 bytes

512 - 1023 16 32 16,384 bytes

1024 - 2047 16 64 32,768 bytes

note that in this table the cluster size is calculated with a sector
size of 512, which is most common. cluster sizes should not exceed
32,768 bytes

resevered sectors (=2 bytes)

states the number of reserved sectors. on fat12/16: 01,00 flip ->
00,01 convert to decimal = 1 sector - the boot record is this.

no. of fats (=1 byte)

states the number fats used. normally set to 2 in case of bad
sectors, which could lead to data errors. however >=1 is also valid -
unsure of maximum.

root entries (=2 bytes)

states the maximum number of 32byte entries in the root directory;
unused for fat32 and set to 00,00; however for fat16: 00,02 flip ->
02,00 convert to decimal = 512; 512 * 32(bytes) = 16384 bytes - data
is stored after this point.

total sectors(16) (=2 bytes)

set if the partiton is less than 33,554,432 bytes (32mb) in size -
mainly for a floppy disk: 40,0b flip -> 0b,40 convert to decimal =
2880 sectors; fat16 partitions may also use this entry. if number of
sectors is above this will be set to 00,00

media type (=1 byte)

states the physical media type; f8 = hard drive; f0 = (standard)
floppy drive

sectors per fat (=2 bytes)

number of sectors in one fat; for a floppy: 09,00 flip -> 00,09
covert to decimal = 9 * 512(bytes per sector) = 4608; there are two
copies of the fat thus 4608 * 2 = 9,216 bytes - the jump to the root
directory.

sectors per track (=2 bytes)

states the number of sectors per track.

no. of heads (=2 bytes)

number of disk drive heads; eg on a floppy disk: 02,00 flip -> 02,00
convert to decimal = 2 heads. on a hard disk this will be much more;
eg f0,00 flip -> 00,f0 convert to decimal = 240 heads

hidden sectors (=4 bytes)

this will matchup with the starting sector stated in the partitions'
entry in the mbr. it states the number of hidden sectors from the
beginning of the drive to the boot record of the partition. normally
set to 3f,00,00,00 flip -> 00,00,00,3f convert to decimal = 63, for a
primary partition. note that sector 63 will contain the boot record,
as sector numbers start at zero. another example from disk:
40,03,07,01 flip -> 01,07,03,40 convert to decimal = 17,236,800

total sectors(32) (=4 bytes)

no of sectors in the partition eg, 10,ec,03,00 flip -> 00,03,ec,10
convert to decimal = 257040 sectors (normally 512 bytes) this entry
is used if total sectors(16) is set to 00,00

drive id (=1 byte)

set to 00 for floppy disks and 80 for hard disks. also refered to as
the logical drive number.

nt reserved (=1 byte)

set at format to 00 and not checked thereafter.

extended boot signature (=1 byte)

set to 29 indicating that the serial, label and type data is present.

volume serial number (=4 bytes)

when a partition is formatted; quick or full, it will display the
newly assigned serial such as: 15e7-2a35. this is written in reverse
on the disk as: 35,2a,e7,15. calculated by combining the date and
time at the point of format, it is an unique identifier to keep track
of drives in use. it is not possible to retrive the date and time
from the serial number.

time: 2:22:32.50p | date: (oct)10-03-2001 | serial on disk:
35,2a,e7,15

first byte is calculated as follows:
milliseconds + days -> convert to hex
50 + 3 = 53 -> = 35

the second byte is calculated as follows:
months + seconds -> convert to hex
10 + 32 = 42 -> = 2a

last two bytes are calculated as follows:
(hours [if pm + 12] * 256) + minutes + years -> convert to hex & flip
(2 + 12 = 14 * 256 = 3584) + 22 + 2001 = 5607 -> 15,e7 -> e7,15

volume/partition name (=11 bytes)

the volume label can be up to 11 characters. it also has to be
referenced in the root directory as a 32 byte entry with the volume

attribute to be displayed. "no name" will normally be used when the
label is unused.

fat type (=8 bytes)

normally set to: fat12, fat16 and fat(32); this is not used to
determine the fat type and can be changed, though some non-ms drivers
use it. usefull as a quick reference of the fat type; though not
always accurate.

executable boot code (=448 bytes)

sets out the aforementioned partition infomation and checks for the
first file to start the system; normally io.sys. if this is not
present; the stated error message (or modified one) will apppear.
normally as follows:
invalid system disk
replace the disk, and then press any key
od,oa meaning carriage-return and linefeed respectfully; derived from
a typewritters actions. the system will look in two places for this
11 character dos named file, which can be renamed. the first 11 and 2
bytes from the end. the file must have an extension which is >= 1
letter.

executable signature (=2 bytes)

the mbr checks for this signature: 55,aa - if absent: "missing
operating system" error.

the fat diagrams

-> media type
-> partition state
-> cluster 2
-> cluster 3
-> cluster 4
-> cluster 5
-> cluster 6
-> cluster 7

-> cluster 8
-> cluster 9
-> cluster 10
-> cluster 11
-> cluster 12
-> cluster 13
-> cluster 14
-> cluster 15

-> media type
-> partition state
-> 1st of a 6 cluster

entry
-> 3 cluster entry
-> 2 to 5 of a 6

cluster entry

-> 10 cluster entry
-> last cluster of 6

entry
-> available cluster
-> 2 bad clusters

fat in general

the file allocation tables (fat) are positioned between the boot
record and the root directory. there are normally two identical
copies made of the fat; fat1 and fat2; designed to try and prevent

storage errors when disks were less reliable. the smallest size fat16
seems to be 256*512bytes

media type (=2 bytes)

the first 2 bytes of fat16 state the media type; f8 = hard disk;
floppy disks are f0; this value must match up with the media type
stated in the boot record.

partition state (=2 bytes)

set to ff,ff at format and at shut down; it means that the partition
is "clean" not mounted or hasn't been written to. browsing the
directories, getting properties and opening files will not mount the
disk; even if the last accessed date is updated, the disk will not be
mounted. however if data or an entry is rename or saved these two
bytes will change to ff,f7 indicating that the partition is "dirty"
mounted or in use. if a system starting up finds that the partition
is still mounted, it will know that the system did not shut down
properly and may run scandisk. this only applies to hard disks. jon
fox informs me that this section is also used to indicate if an
hardware error occurred - i was unable to verify this ;-)

fat attributes (varies in size)

data clusters starts at cluster 2 right after the root directory. on
fat16 one cluster represented by 2 bytes in the fat. 2bytes->16bits-
>fat16 - fat32 uses 4 bytes. each 2 bytes in the fat mark a position
in the data area of the partition. if the cluster is part of chain of
clusters; occupying more than one cluster, they will be numbered in
hex order. the numbers range from 03,00 to 99,ff; adding from the
left. if the cluster is the last in the chain or if the entry only
takes up one cluster it will be marked as ff,ff. if a file is resaved
and it exceeds its allocated cluster, the file or directory list will
be split onto two, and the extra clusters located elsewhere on the
drive. the fat will be changed so that the last cluster in the first
chain will point to the start of the next cluster chain. in the
diagram above the first cluster points to cluster 6, (though labeled
as 07,00 it is cluster 6). this is known as fragmenting, and can slow
the system down a little as these pieces need to be reassembled
before use. defragmenting will move the data around so that all the
chains of clusters are grouped together. if there is no data stored
or data has been deleted the fat will be marked as 00,00. sometimes
the system cannot keep up with this; if a 20 cluster entry is deleted
and then a new 5 cluster one created the data maybe located after the
blank entries of the deleted 20 cluster one. a reboot maybe required
for the area to be acknowledged. if the fat entries do not completely
fill the last sector of the fat the remaining space will be left
empty and scandisk will not check it. bad clusters are marked with
f7,ff. data will not be written to these areas and a thorough
scandisk will not recover these clusters, only report that they are
there. data can be hidden in phoney bad clusters, such program needs
to keep track of where the data is stored and replace certain fat
entries and the data "disappears"

data entry diagram

-> ordinal field
-> unicode long file name
-> longfile name attribute
-> reserved for future use
-> dos name check sum
-> lfn data location
-> dos file name
-> entry attributes
-> nt reserved

-> create time
-> create date
-> access date
-> access time
-> modified time
-> modified date
-> data location
-> data length

entries in general

entries are made up of 32 bytes. if the entry is deleted the first byte
is changed to e5; and the sectors are marked as free. basic computer
forensics can reveal alot because of this. if this is a risk, check
http://www.fortunecity.com/skyscraper/true/882/Comparison_Shredders.htm
for prevention programs. defraging the disk will compress the directory
entries and clear any redundent ones; it will also rearrange the data
so that it is grouped together, but old data will still be there. if
the first byte is 00, entries are considered to have ended for that
directory.
be aware of that

ordinal fields (=1 byte - every 32 bytes of the lfn)

the first byte of each 32 byte string of the long file name is called
the ordinal field. it tells the system which order the entries are to
be read in. this is in hex and read from 01. the first byte of the
entire entry however is different, it defines the length of the total
lfn entry.
from the root dir:

letter the long file name's... no. of 16 byte lines/size

a/41
b/42
c/43
d/44
e/45
f/46
g/47
h/48
i/49
j/4a
k/4b
l/4c
m/4d
n/4e
o/4f
p/50
q/51
r/52
s/53
t/54

length is >=001 & <=013
length is >=014 & <=026
length is >=027 & <=039
length is >=040 & <=052
length is >=053 & <=065
length is >=066 & <=078
length is >=079 & <=091
length is >=092 & <=104
length is >=105 & <=117
length is >=118 & <=130
length is >=131 & <=143
length is >=144 & <=156
length is >=157 & <=169
length is >=170 & <=182
length is >=183 & <=195
length is >=196 & <=208
length is >=209 & <=221
length is >=222 & <=234
length is >=235 & <=247
length is >=248 & <=250

02 lines 032 bytes/020
04 lines 064 bytes/040
06 lines 096 bytes/060
08 lines 128 bytes/080
10 lines 160 bytes/0a0
12 lines 192 bytes/0c0
14 lines 224 bytes/0e0
16 lines 256 bytes/100
18 lines 288 bytes/120
20 lines 320 bytes/140
22 lines 352 bytes/160
24 lines 384 bytes/180
26 lines 416 bytes/1a0
28 lines 448 bytes/1c0
30 lines 480 bytes/1e0
32 lines 512 bytes/200
34 lines 544 bytes/220
36 lines 576 bytes/240
38 lines 608 bytes/260
40 lines 640 bytes/280

the 32 byte blocks are positioned in reverse order with the last
section at the beginning of the entire entry.

the long file name

the name is stored in unicode format. a double byte character system
designed to handle all possible foreign and scientific characters. the

http://www.fortunecity.com/skyscraper/true/882/Comparison_Shredders.htm

orginal ascii characters are the same except they are two bytes in
size, the second byte is a null; 00. check http://www.unicode.org for a
more in depth explaination. there can be up to 13 unicode characters
per 32 byte section. if however the long file name does not fill the
slot exactly a unicode null (00,00) will be added to the end, followed
by ff,ff's until the section is filled. note that entries do not have
to have a lfn.

as you can see from the table above a long file name in the root
directory can be between 1 and 250 characters. this is alittle odd as
there is still space for 10(?) more characters, also stated by
microsoft that files could have upto 255 characters. total path length;
tpl refered to in this text is the character length from the drive
letter to the folder or file, eg: "c:\new folder" has a tpl of 13.
"c:\new folder\test.dat" has a tpl of 22. a large tpl can have strange
effects on explorer. a single folder in c:\ can have a tpl of 253 (250
+ c:\) it can only contain files <= 4 characters in length. however if
there are two folders the tpl can be up to 255, with 2 remaining for
files. the maximum valid tpl for 98f16 including a file is 258. note
that this value can change alittle, eg one character folders;
c:\a\a\a\...etc (122 folders; maximum) can have a tpl length of 254,
including 7 for a file; and even this can change, if you paste a file
in it can be up to 12 characters for a file. why this varies is
unclear. explorer checks the tpl on entry creation to see that it does
not exceed an illegal value, however it only checks it up to that
point. thus two folders could be created, and the first one renamed to
a longer length so that when the subfolder is accessed the tpl is
greater than allowed. while a tpl of such length will have stange
effects on the system eg, inaccessable, unviewable, unmoveable,
undeleteable, false properties of files and folders; scandisk will fix
them by either renaming the affected files or folders and/or moving
them to the root directory. one combination is of note. create a folder
in the root directory with a name of 1 character, save a file of 5
characters in length into the folder, rename the folder so it has 250
characters in the name. tpl is 259. properties are correct for the file
and it can be opened and resaved to the same location, however it
cannot be moved out of that folder nor renamed or deleted, to do so the
foldername must be shortened. this doesn't stop the file being opened
and resaved to a different location. scandisk doesn't seem to mind this
combination.

not all ascii (unicode) characters can be used in long file names.
names cannot contain the following characters: \/:*?"<>| if the name
begins with a space it will be removed, if a fullstop - prompt for a
valid name. if the name ends with a fullstop or spaces they will be
removed. letters from the extended character set can cause some
confusion of explorer in 9x/me systems. the following acsii characters
inclusively are of note in 9x: 158, 169, 176->224, 226->229, 231->240,
242->245, 247, 249, 251->252 and 254->255; 75 characters. in me: 176-
>180, 185->188, 191->197, 200->206, 213, 217->220, 223, 242 and 254; 31
characters. if a folder contains any of this characters you cannot
access it via explorer; it errors with "the folder 'path' doesn't
exist" twice. properties are displayed incorrectly. copying and
deletion attempts result in "cannot delete file file system error
(1026)." explorer will prevent the entering of these characters by
turning them in the underscore. they can be entered in a dosbox. check
numlock is on; normally by default, then press alt+type the number on
the keypad - laptops normally alt+fn+no. if a file has these characters
in, when opened it will prompt "cannot find the 'path\file' do you want
to create a new file?" clicking no creates an untitled blank document.
clicking yes creates a new blank file, but with the illegal character
an underscore in the name - resave it. now, and this is quite
interesting; when opening or deleting the illegal file, it will
open/delete the one with the underscore in. this means that explorer,
on finding a entry with a character in that it cannot handle, scans the

http://www.unicode.org/

current directory for one of the same name, but with an underscore in.
folders can also be "redirected" this way and the underscore named
entry will be opened with internet explorer. scandisk doesn't seem to
mind this.

some whole words are also a problem. you cannot create directories or
files of the following names: aux, con, nul, prn, com1, com2, com3,
com4, lpt1, lpt2, lpt3, lpt4, lpt5, lpt6, lpt7, lpt8, lpt9, clock$ and
config$ in total, 19 words. it will error with either: unable to create
directory or cannot rename thefilename: access is denied. it seems that
these values, reserved hardware device/port names, may already be in
use by the operating system - they are mentioned in the io.sys.
attempts to access a folder with a subfolder of both the same reserved
name will crash/freeze the system for: aux\aux, con\con, nul\nul,
clock\clock and config\config. the others will result in the error:
invalid directory. you cannot create files or folders in windows of
these reserved words, but you can change them with a hexeditor on the
disk, most result in either errors, instant freezing/crashing of the
system and nondeletable, noncopiable or inaccessable entries in
explorer. a lot of these entries' properties are reported as 112bytes.
scandisk will rename most reserved names with a hyphen on the end.
however scandisk does seem to mind the following names: lpt4 to lpt9.
the names have to be in uppercase or scandisk will error and fix to
uppercase. the folder 'path' does not exist error appears twice on
attempted access; files cannot be opened. cannot delete file: file
system error (1026). properties report the folder as a file of zero
bytes. cannot copy file: file system error (1026) note that these may
vary as hardware configurations may be different.

lfn attributes and location
(= 1 byte and 2 bytes respectfully; every 32 byte section of the lfn)

entire entries are read in as 32 byte blocks. to ensure compatiblity
with older systems, when they introduced long file names, each section
of a long file name had to "pretend" to be an entire entry. to do this
the entry attribute and data location are set to the "impossible
values" of 0f and 00,00 respectfully. each 32 byte section of the long
file name is required to have this slotted in.

lfn reserved (=1 byte - every 32 bytes of the lfn)

set to 00 at entry creation. it is reserved for future use; however
copying or renaming a file/folder resets it to 00. resaving a file
retains any changed values.

dos name checksum (=1 byte - every 32 bytes of the lfn)

this is for checking that the dos name and the long file name match up
correctly. if this value is incorrect, the lfn will be discarded and
the dos name subsituted.

the steps are:

1. take the ascii value of the first character. this is your first sum
2. rotate all the bits of the sum rightward by one bit
3. add the ascii value of the next character with the value from above.
this is
 your next sum
4. repeat steps 2 through 3 until you are all through with the 11
characters in
 the 8.3 filename

note that spaces (ascii value 20) are also included.

to calculate manually use calc.exe; view scientific, switch to hex mode

and select the byte radiobutton under the display.

dosname: UNTITLEDTXT - lfn checksum: 44
in this section "->" means rotate all the bits, one bit to the right.

U = 55 = 0101 0101 -> 1010 1010 = AA
N = 4E + AA = F8 = 1111 1000 -> 0111 1100 = 7C
T = 54 + 7C = D0 = 1101 0000 -> 0110 1000 = 68
I = 49 + 68 = B1 = 1011 0001 -> 1101 1000 = D8
T = 54 + D8 = 2C = 0010 1100 -> 0001 0110 = 16
L = 4C + 16 = 62 = 0110 0010 -> 0011 0001 = 31
E = 45 + 31 = 76 = 0111 0110 -> 0011 1011 = 3b
D = 44 + 3b = 7f = 0111 1111 -> 1011 1111 = bf
T = 54 + bf = 13 = 0001 0011 -> 1000 1001 = 89
X = 58 + 89 = e1 = 1110 0001 -> 1111 0000 = f0
T = 54 + f0 = 44

dos file name (=11 bytes)

dos names can be >=1 and <=11 characters. any remaining bytes will be
filled with spaces. if the entry also has a long file name attached the
dos name is changed slightly. the name is shortened to 6 characters and
a tilde~ and number are added to the end, giving a total of 8
characters. if the first 6 letters are different from all other dos
names in that directory then the ending is ~1 however if they are the
same the ending number will be different. the system scans the dos
names in that directory for the lowest available ending number to use,
incrementing by 1 (decimal) as needed. when ~10 is reached the dos name
is reduced to 5 characters to make room. if a file is copied to a
different directory the dos name and long file name checksum may
change, as the system checks both dos and long file names already in
use. process referred to in this text as tilded. the last three letters
of a dos name are considered the file extension and will be divided off
from the rest by a space or a fullstop. all letters are converted to
uppercase. if an entry has its dos name converted to lowercase it can
cause problems. while files handle okay, attempts to open a folders
results in the error: c:\folder is not accessible. this folder was
moved or removed. in a dosbox the result is path not found and the
volume serial number and name are displayed, it can however be deleted,
in dos or explorer. scandisk will fix this by converting back to
uppercase. if the name contains spaces, they will be removed and the
name tilded. if the name contains a fullstop, upto the first three
letters thereafter are considered the extension. if the extension is
more than three letters, just the first three will be used plus the
name is tilded. if the name contains more than one fullstop the last
one is used as the divide between the name and extension. all other
fullstops are removed and the name is tilded.

lfn names cannot contain the following characters: \/:*?"<>| some can
be attempted to be used in dos, but they have strange effects. tested
in a dosbox; file creator is "copy con filename" typed text "crtl +
z","enter"
\ creation: path not found; rename: invalid parameter
/ creation: invalid switch; rename: anything after and including the
forward slash will be removed
: creation: to many parameters; rename: file not found
* creation: anything after and including the asterisk; but not the
extension will be removed. * is a wildcard
? creation: the question mark is removed; rename: either the question
mark will be substituted for an other letter or it will be removed; how
it substitutes is unclear. ? like * is a wildcard
" creation: the double quotation mark is removed; rename: as creation
< creation: file not found; rename: as creation
> creation: splits into two different file at the greater-than sign.
the first half contains the text, while the second contains the

following text: " 1 file(s) copied" - the confirmation that
appears after the text is saved; rename: as creation, but the second
half contains nothing as there isan't a confirmation on rename. the >
character pushes screen output to "somewhere" as shown in the example
above a file. >> appends to "wherever"
| creation: anything after and including the vertical bar will be
removed, also on save the message bad command or file name appears;
rename: as creation. the | can be used to "pipe" instructions eg: echo
y|del *.* >nul will quietly delete all files in the current directory
(hidden, readonly and system attribute file are not deleted)

entry attributes (=1 byte)

documented attribute values
none: 00
archive: 20
read-only: 01
system: 04
hidden: 02
directory: 10
volume: 28 (hdd)

if attribute = 00 then its treated as a file.

for archive, hidden and system attributes; add the values together: 26

archive and directory *can* also be unoffically stated as other values.
read in the first nybble and convert it to decimal. if its divisible by
2 its an archive, else its a folder.

if the second nybble is >=8 and <=e the entry disappears and becomes
the volume name. the volume attribute should only be stated once on the
partition, offset 15h. sometimes there will be an entry already in root
that will override this. this is valid if the entry has no data
attached, else scandisk will delete and recover any clusters. n.b:
volumes are archives; if stating it in the root (this will only work in
root) so f8 is invalid here. there can only be one valid entry in the
root that can have the volume attribute.

if the second nybble is =f the entry disappears completely, however its
still a volume. scandisk will error if there is data attached, and
delete any data.

volumes can labelled <=11 characters from explorer, however you can
increase the length by saving an entry in the root directory and
changing its attributes to a volume, this can have some interesting
effects. volume names >=12 and <=32 will prevent renaming of the label
via explorer even though the text field will be editable. error: access
denied. >=33 the label will be greyed out and uneditable. volume names
of >=78 will cause illegal operation errors and not enough available
memory errors on attempted format in explorer. volume names of >=83
will cause scandisk to crash in a similar way, and reboot maybe needed
even if the volume attribute is removed. all values above these have
not been tested, but are believed to be the same. partitions can still
be formatted in dos/dosbox.

ntreserved (=1 byte)

set to 00 at entry creation and never modified or checked thereafter.
reserved for windows nt. copying the file resets the attribute, but
renaming doesn't.

create time (=3 bytes)

minimum time: 00:00:00 = 00 00 00 if zero, no time in properties

maximum time: 23:59:59 = 64 7D BF
how it calculates it:
the values on the disk are: 64,90,a6 and properties: 8:52:33pm
first flip the bytes: 64,90,a6 -> a6,90,64
convert to binary: a6,90,64 -> 10100110,10010000,01100100
divide up the sections and convert back to decimal: (from left to
right)
(5bits;hour) 10100 -> = 20hrs (24hr) or - 12 = 8pm
(6bits;mins) 110100 -> = 52 minutes
(5bits;secs) 10000 -> 16; * 2 = 32 seconds
(8bits;mili) 01100100 -> = 100 milliseconds
if millisecs >=000 and <=099; seconds is correct + no. of milliseconds
if millisecs >=100 and <=199; seconds + 1 = seconds + no. of
milliseconds
if millisecs >=200; seconds + 2 = seconds (etc) but its considered
invalid
which gives 33 seconds exactly: 8:52:33pm
invalid times such as 2600hours simply roll fowards to become 0200hours
in properties, scandisk does not error.

create date (=2 bytes)

minimum date: 1/1/1980 = 21 00
maximum date: 2/7/2106 = 46 FC
how it calculates it:
the values on the disk are: 14,2b and properties: 20th august 2001
first flip the bytes: 14,2b -> 2b,14
convert to binary: 2b,14 -> 00101011,00010100
divide up the sections and convert back to decimal: (from left to
right)
(7bits;yr) 0010101 -> 21; + 1980 = 2001
(4bits;mt) 1000 -> = 8 or august
(5bits;dy) 10100 -> = 20th
20th august 2001
invalid dates such as the 31st of september simply roll forwards to the
1st of october in properties, scandisk does not error.

the last possible create date and time is:
sunday, february 07, 2106 7:28:15am anything beyond = (unknown)
the create date and time seem to be handled together though they are
separate entries.

access date (=2 bytes)

minimum date: 1/1/1980 = 21 00
maximum date: 2/7/2106 = 46 FC
this date is highly changeable, just right clicking on it will reset to
current date, however it can be correctly querried programatically.
this is calculated the same way as the modified date (see above)

access time (=2 bytes)

minimum/maximum: 00 00
this is a strange entry, it has to be 00 00, if you change it manually,
windows changes it back if you view the properties of the file, or if
you resave it. therfore you can only get access properties to the day.

modifed time (=2 bytes)

00:00:00 = 00 00 if zero, no time in properties
23:59:58 = 24 28
this is calculated the same way as the modified time (see above) except
that it does not have the same accuracy; one less byte. thus the
modified time is to the nearest 2 seconds.

the last possible modified date and time is:

sunday, february 07, 2106 7:28:14am

modified date (=2 bytes)

minimum date: 1/1/1980 = 21 00
maximum date: 2/7/2106 = 46 FC
this is calculated the same way as the modified date (see above)

data location (=2 bytes)

the minimum can be 00 - 0 and the maximum ff - 65535
the correct value will point the os to the starting cluster of the
data.
eg, 03 00
flip these values: 00 03
convert to decimal: 3
data starts at the beginning of the third cluster.

if an entry points to the same cluster they are said to be cross-
linked, this is of note regarding folders. foldernames mentioned are
only for reference. create a folder in root called folder1, create a
subfolder within called folder2. change the location of folder2 to 00.
attempts to access folder2 result in explorer looping back to root.
scandisk will error and the fix is to move/recover folder2 and its
contents to the root directory. scandisk can get a little muddled if
you create a subfolder within folder2 called folder3 and point the
location of folder3 to folder2. the default fix is to give each file a
separate copy of the shared cluster(s) if this is attempted scandisk
will loop at each attempt, and any data in folder3 maynot be recovered.
there are, however other fix options available which will recover the
data, though some directories maybe undeletable due to an exceeded
total path length, just shorten the folder name.

data length (=4 bytes)

the minimum can be 00 00 00 00 - 0 and the maximum ff ff ff ff -
 4,294,967,295
gb, mb, kb, by

this entry will state the length of data to read in.
eg, AC 3B 96 00
flip these values: 00 96 3B AC
convert to decimal: 9,845,676 bytes or 9.38MB
folders have a value of: 00 00 00 00

the maximum is restricted by the size of the partition. the largest
partition creatable by fdisk for fat16 is 2047.31mb (2,146,765,824
bytes) entry stated as 00,80,f0,7f. the largest file creatable in this
partition is 1.99gb (2,146,467,840 bytes). not all the data area is
filled, 18,944 bytes of surplus sectors were left empty at the end.

subdirectories (=64 bytes)

at the beginning of all directories (not root) there will be two folder
entries of total 64 bytes before the list of files or folders within
that directory. they are dot and dotdot and are visable in dos. dot is
the current folder and dotdot is the parent folder. each entry will
have the following properties: a dos name of either dot or dotdot;
attributes of a folder; the create, access, modified date and time,
though only the modified date and time are required; the cluster
location of the folder, dot will be the same as the current folder and
dotdot will be the same as the parent folder or 00 if root; and a data
length of zero. also these entries have to be at the beginning of the
directory list. a three dot entry is not valid even though you can
change to two folders up. you can add more entire "dot" entries without
scandisk erroring, on the condition that the dos name, the directory

attribute, the cluster location matchup and the data length is zero.
these extra entries will also not be visable in explorer and they do
not have to be at the beginning of the directory list. folders seem to
handle okay without the dot and dotdot entries and the system doesn't
check the location values when changing directory.

the root directory in fat16 is a fixed at 16,384 bytes in size. in
total: 512 dosname entries of 32bytes or 256, 64byte entries with a lfn
of upto 13 characters. if the maximum lfn entry is used, a maximum of
24 entries can be listed in the root directory with 256 bytes
remaining. at this point errors will occur if any entries are attempted
to be added or lengthen. entrycopy: "cannot copy thefile: the directory
or file cannot be created." entryrename: "cannot rename thefile: access
is denied. make sure the disk is not full or write-protected and that
the file is not currently in use."

subfolders can have many entries. when a subfolder is created, 1
cluster is set aside for entries. when this is exceeded the directory
list extends into another cluster, usually one is not avaiable right
after the first section, as a result directory lists get fragmented
accross the drive.

you must get permission from the respective author before reproduction

