
13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 1/11

ECE353: Introduction to Microprocessor
Systems

I2C
Contents [hide]

1 Overview
2 Pin Construction
3 Signal Descriptions
4 Data Format

4.1 Start Condition
4.2 Stop Condition
4.3 I2C Device Addresses
4.4 7-bit Vs. 8-bit Addresses

5 TM4C123 GPIO Configuration
6 TM4C123 I2C Peripheral Configuration
7 TM4C123 I2C Write Byte
8 TM4C123 I2C Read Byte
9 TM4C123 I2C Functions

Overview

The Inter-Integrated Circuit, or I2C, bus is an interface found on most microprocessors and is heavily
used in embedded systems design. The I2C bus is used to communicate with peripheral devices in
much the same way as the SPI and UART interfaces.

The key feature that di�erentiates I2C from UART and SPI is that the I2C bus can support multiple
master and slave devices on the same bus. The ability to support multiple devices on a single bus
allows us to reduce the number of external pins on a microprocessor, reducing the cost and size of the
device.

Source: TM4C123GH6PM Data Sheet, section 16.3

http://ece353.engr.wisc.edu/
http://ece353.engr.wisc.edu/wp-uploads/2014/11/I2C-Bus.jpg
http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 2/11

Pin Construction

The I2C bus consists of two signals: the data (SDA) and clock (SCL) lines. These pins are configured as
open-drain (or open-collector) pins. An open-drain pin is constructed using a single transistor that
connects the output pin to ground when the transistor is turned on. When the transistor is turned o�,
the output pin is le� unconnected and a pull-up resistor pulls the line up to VCC (logic 1).

An open-drain pin make it a good choice for a bidirectional data bus where multiple devices many
initiate a data transfer. If one device attempts to place logic 1 on the line while another device
attempts to drive logic 0, the pull-up resistor acts to limit the current and prevents a short circuit.

Standard (totem pole) GPIO pins would not prevent a short circuit. Standard GPIO pins actively drive
logic 1 and 0 on a signal without the use of a pull-up resistor. If two di�erent devices were to drive
opposite logic values on the signal, this would result in a short circuit that could damage both
devices. This is the reason that standard GPIO pins are not used for bi-directional data transmissions.

I2C bus typologies can be very complex. A single I2C bus can have multiple slaves and multiple
masters. We will only deal with most basic bus topology: a single master and multiple slave devices.

Signal Descriptions

“The I2C bus uses only two signals: SDA and SCL, named I2CSDA and I2CSCL on TM4C123GH6PM
microcontrollers. SDA is the bi-directional serial data line and SCL is the bi-directional serial clock line.
The bus is considered idle when both lines are High.

Every transaction on the I2C bus is nine bits long, consisting of eight data bits and a single acknowledge
bit. The number of bytes per transfer is unrestricted, but each data byte has to be followed by an
acknowledge bit, and data must be transferred MSB first. When a receiver cannot receive another
complete byte, it can hold the clock line SCL Low and force the transmitter into a wait state. The data
transfer continues when the receiver releases the clock SCL”

Source: TM4C123GH6PM Data Sheet, section 16.3.1

SDA is allowed to change only when SCL is low. When SCL is high, the SDA must not change.

Data Format

http://en.wikipedia.org/wiki/Open_collector#MOSFET
http://ece353.engr.wisc.edu/wp-uploads/2014/11/Open-Collector.jpg
http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 3/11

Data transmitted over the I2C interface uses many of the same concepts used in SPI and UART
interfaces. Data is transmitted most significant bit first. Data sent over I2c is framed by start and stop
conditions. Data can be read and written from an external device by specifying the internal addresses
of registers in the peripheral device.

A key di�erence with the I2C interface is that each byte of data has to be acknowledged, or ACKed, by
the receiving device in order for the data transaction to complete. The ACK is necessary when many
devices are present on the same I2C bus. The ACK indicates to the transmitter that it is successfully
communicating with another device and can maintain ownership of the bus until the data transaction
completes.

Start Condition

Both the SDA and SCL lines are pulled high when there is no activity on the bus. In order to
signal the beginning of a data transaction, the device initiating the data transfer will pull the SDA
line low while the SCL is still high.

Acknowledgements

All bus transactions have a required acknowledge clock cycle that is generated by the master.
During the acknowledge cycle, the transmitter (which can be the master or slave) releases the SDA
line. To acknowledge the transaction, the receiver must pull down SDA during the acknowledge
clock cycle.

When a slave receiver does not acknowledge the slave address, SDA must be le� High by the slave
so that the master can generate a STOP condition and abort the current transfer.

If the master device is acting as a receiver during a transfer, it is responsible for acknowledging
each transfer made by the slave. Because the master controls the number of bytes in the transfer, it
signals the end of data to the slave transmitter by not generating an acknowledge on the last data
byte. The slave transmitter must then release SDA to allow the master to generate the STOP or a
repeated START condition.

http://ece353.engr.wisc.edu/wp-uploads/2014/11/I2C_Start.png

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 4/11

Source: TM4C123GH6PM Data Sheet, section 16.3.1.4

The image below shows an ACK. An ACK is generated when the data line is released on the 9th
clock cycle by the transmitter. An ACK occurs if the receiver pulls SDA low before the next
positive edge of SCL. If the SDA is not pulled low by the next clock cycle, the data transmission is
aborted.

Stop Condition

The master indicates that a transaction will end by generating a stop condition. A stop condition
occurs when SCL is high and SDA makes a low to high transition.

I2C Device Addresses

http://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf
http://ece353.engr.wisc.edu/wp-uploads/2014/11/I2C_Ack.png
http://ece353.engr.wisc.edu/wp-uploads/2014/11/I2C-Stop.png

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 5/11

Because the I2C bus is not a point-to-point connection, there needs to be a mechanism to
di�erentiate which pair of devices are currently transmitting data. To solve this problem, each device
is assigned an address on the I2C bus. When the master device wants to send/receive data from a
specific device, the first byte transmitted is the address of the slave device being accessed.

The address of the slave device consists of a device ID found in the data sheet of the device. In
addition to the device ID, many devices have one or more hardware address pins that allow you to
support multiple of the same slave device on the same I2C bus. Each hardware address pin will be set
to an address using pull-up/down resistors to set a unique address for each device.

We will use the schematic snippet above to determine the I2C address of the MCP23017 IO expander.
 Chapter 5 of the MCP23017 data sheet gives us the following information about how to determine the
address.

Source: MCP23017

Using this figure, we see that the upper 4 bits of the address are 0100 . Bits 3-1 are set using the
values supplied on the hardware address pins. Using the schematic, these bits will be set to 000 . Bit
0 always indicates if the device is being read or written. In order to write to the MCP23017 above, the
master would start a transaction with a byte equal to 0×40. In order to read from the MCP23017

2

2

http://ece353.engr.wisc.edu/wp-uploads/2014/11/deviceAddress.png
http://ww1.microchip.com/downloads/en/DeviceDoc/21952b.pdf
http://ece353.engr.wisc.edu/wp-uploads/2014/11/mcp23017_control_byte.png
http://ww1.microchip.com/downloads/en/DeviceDoc/21952b.pdf

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 6/11

above, the master device would transmit 0×41. When multiple devices are placed on the I2C bus, the
hardware designer must ensure that two devices do not have conflicting addresses.

7-bit Vs. 8-bit Addresses

One common mistake that embedded so�ware developers encounter when using I2C is specifying an
incorrect address for a device on the I2C bus. The confusion arises because some data sheets list a 7-
bit address and others list an 8-bit address. So what is the di�erence between the two?

An 8-bit address includes the read/write bit. Using the 8th bit to specifying an address results in one
logical address for writing to the device and a di�erent address to read from the device. The
addresses shown above for the MCP23017 above are 8-bit address.

A 7-bit address omits the read/write bit. When specifying the 7-bit address, we only use bits 7-1 of the
8-bit address. If we use bits 7-1 from the example above, the 7-bit address becomes 0×20. It is
understood that the 7-bit address is shi�ed le� by 1 position and the read/write bit is set
appropriately.

In the end, both representations of the I2C address will result in the same I2C address being placed on
SDA.

TM4C123 GPIO Configuration

TM4C123 I2C Peripheral Configuration

1
2
3
4
5
6
7
8
9
10
11
12

gpio_enable_port(I2C_GPIO_BASE);

// Configure SCL
gpio_config_digital_enable(I2C_GPIO_BASE, I2C_SCL_PIN);
gpio_config_alternate_function(I2C_GPIO_BASE, I2C_SCL_PIN);
gpio_config_port_control(I2C_GPIO_BASE, I2C_SCL_PIN_PCTL);

// Configure SDA
gpio_config_digital_enable(I2C_GPIO_BASE, I2C_SDA_PIN);
gpio_config_open_drain(I2C_GPIO_BASE, I2C_SDA_PIN);
gpio_config_alternate_function(I2C_GPIO_BASE, I2C_SDA_PIN);
gpio_config_port_control(I2C_GPIO_BASE, I2C_SDA_PIN_PCTL);

1
2
3
4
5
6
7
8
9
10
11
12
13
14

//**
//
//**
bool initializeI2CMaster(uint32_t base_addr)
{

 myI2C = (I2C0_Type *) base_addr;

 // Validate that a correct base address has been passed
 // Turn on the Clock Gating Register
 switch (base_addr)
 {
 case I2C0_BASE :
 SYSCTL->RCGCI2C |= SYSCTL_RCGCI2C_R0;

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 7/11

TM4C123 I2C Write Byte

The following snippet of code writes 1 byte of data to the IODIRA and IODIRB registers in the
MCP23017. In addition to the control byte (I2C Address + write), we need to transfer two bytes of
data. The first is the address we are writing to and the second is the value we wish to write.

The START condition is initiated with a MCS_START flag and the STOP condition is initiated with a
I2C_MCS_STOP flag.

TM4C123 I2C Read Byte

The following code would read one byte of data from the IODIRA register of the MCP23017. When
reading data, we need to first write the address of the register that we intend to read. A�er that byte
of data has been transmitted, we need to issue a restart condition.

The restart condition is initiated with the same I2C Address, but sets the read bit to a 1. Once the
restart operation has been sent, a single byte of data will be read.

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

 while ((SYSCTL->PRI2C & SYSCTL_PRI2C_R0) == 0); /* wait until
 break;
 case I2C1_BASE :
 SYSCTL->RCGCI2C |= SYSCTL_RCGCI2C_R1;
 while ((SYSCTL->PRI2C & SYSCTL_PRI2C_R1) == 0); /* wait until
 break;
 case I2C2_BASE :
 SYSCTL->RCGCI2C |= SYSCTL_RCGCI2C_R2;
 while ((SYSCTL->PRI2C & SYSCTL_PRI2C_R2) == 0); /* wait until
 break;
 case I2C3_BASE :
 SYSCTL->RCGCI2C |= SYSCTL_RCGCI2C_R3;
 while ((SYSCTL->PRI2C & SYSCTL_PRI2C_R3) == 0); /* wait until
 break;
 default:
 return false;
 }

 // Enable the I2C port as master
 myI2C->MCR = I2C_MCR_MFE;

 // Set the clock speed to be 100Kpbs assuming a 50MHz clock
 // TPR = (System Clock/(2*(SCL_LP + SCL_HP)*SCL_CLK))-1;
 // TPR = (50MHz/(2*(6+4)*100000))-1
 myI2C->MTPR = 0x18;

 return true;
}

1
2
3
4
5
6
7
8
9
10
11
12
13

 i2cSetSlaveAddr(I2C_BASE, 0x20, I2C_WRITE);

 // Send the IODIRA Address
 i2cSendByte(I2C_BASE, 0x00, I2C_MCS_START | I2C_MCS_RUN);

 // Set PortA to be outputs
 i2cSendByte(I2C_BASE, 0x00, I2C_MCS_RUN | I2C_MCS_STOP);

 // Send the IODIRB Address
 i2cSendByte(I2C_BASE, 0x01, I2C_MCS_START | I2C_MCS_RUN);

 // Set PortB to be outputs
 i2cSendByte(I2C_BASE, 0x00, I2C_MCS_RUN | I2C_MCS_STOP);

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 8/11

TM4C123 I2C Functions

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

i2c_status_t status;

// Set I2C address
i2cSetSlaveAddr(I2C_BASE, 0x20, I2C_WRITE);

// Send the IODIRA Address
i2cSendByte(I2C_BASE, 0x00, I2C_MCS_START | I2C_MCS_RUN);

// Set I2C address,
i2cSetSlaveAddr(I2C_BASE, 0x20, I2C_READ);

// Issue Re-Start, Read IODIR Register
status = i2cGetByte(
 I2C_BASE,
 data,
 I2C_MCS_START | I2C_MCS_RUN | I2C_MCS_STOP
);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

//***
//***
i2c_status_t i2cSetSlaveAddr(
 uint32_t baseAddr,
 uint8_t slaveAddr,
 i2c_read_write_t readWrite
)
{
 I2C0_Type *myI2C;
 if(i2cVerifyBaseAddr(baseAddr) == false)
 {
 return I2C_INVALID_BASE;
 }

 myI2C = (I2C0_Type *) baseAddr;

 // Set the slave address to transmit data
 myI2C->MSA = (slaveAddr << 1) | readWrite;

 return I2C_OK;
}

//***
//***
i2c_status_t i2cStop(
 uint32_t baseAddr
)
{
 I2C0_Type *myI2C;
 if(i2cVerifyBaseAddr(baseAddr) == false)
 {
 return I2C_INVALID_BASE;
 }

 myI2C = (I2C0_Type *) baseAddr;

 // Stop the interface
 myI2C->MCS = I2C_MCS_STOP;

 return I2C_OK;
}

//***
//***
bool

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 9/11

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114

I2CMasterBusy(uint32_t i2c_base)
{
 I2C0_Type *myI2C;

 if(i2cVerifyBaseAddr(i2c_base) == false)
 {
 return false;
 }

 myI2C = (I2C0_Type *) i2c_base;

 if(myI2C->MCS & I2C_MCS_BUSY)
 {
 return(true);
 }
 else
 {
 return(false);
 }
}

//***
//***
bool
I2CMasterAdrAck(uint32_t i2c_base)
{
 I2C0_Type *myI2C;
 uint32_t status;
 if(i2cVerifyBaseAddr(i2c_base) == false)
 {
 return false;
 }

 myI2C = (I2C0_Type *) i2c_base;

 status = myI2C->MCS;
 if((status & I2C_MCS_ADRACK)!= 0)
 {
 return(false);
 }
 else
 {
 return(true);
 }
}

//***
//***
bool
I2CMasterDatAck(uint32_t i2c_base)
{
 I2C0_Type *myI2C;
 uint32_t status;
 if(i2cVerifyBaseAddr(i2c_base) == false)
 {
 return false;
 }

 myI2C = (I2C0_Type *) i2c_base;

 status = myI2C->MCS;
 if((status & I2C_MCS_DATACK)!= 0)
 {
 return(false);
 }
 else
 {
 return(true);
 }

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 10/11

115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

}

//***
//***
i2c_status_t i2cSendByte(
 uint32_t baseAddr,
 uint8_t data,
 uint8_t masterControlSettings
)
{
 I2C0_Type *myI2C;

 if(i2cVerifyBaseAddr(baseAddr) == false)
 {
 return I2C_INVALID_BASE;
 }
 myI2C = (I2C0_Type *) baseAddr;

 // Write the upper address to the data register
 myI2C->MDR = data;

 // Start the transaction
 myI2C->MCS = masterControlSettings;

 // Wait for the device to be free
 while (I2CMasterBusy(baseAddr)) {};

 // Check for error conditions
 if (myI2C->MCS & (I2C_MCS_ERROR | I2C_MCS_ARBLST))
 {
 return I2C_ARBLST;
 }
 else if (myI2C->MCS & I2C_MCS_ERROR)
 {
 myI2C->MCS = I2C_MCS_STOP;
 return I2C_BUS_ERROR;
 }
 else if (myI2C->MCS & I2C_MCS_DATACK)
 {
 return I2C_NO_ACK;
 }
 else
 {
 return I2C_OK;
 }
}

//***
//***
i2c_status_t i2cGetByte(
 uint32_t baseAddr,
 uint8_t *data,
 uint8_t masterControlSettings
)
{
 I2C0_Type *myI2C;

 if(i2cVerifyBaseAddr(baseAddr) == false)
 {
 return I2C_INVALID_BASE;
 }

 myI2C = (I2C0_Type *) baseAddr;

 // Start the transaction
 myI2C->MCS = masterControlSettings;

 // Wait for the device to be free
 while (I2CMasterBusy(baseAddr)) {};

13.11.2017 I2C | ECE353: Introduct�on to M�croprocessor Systems

http://ece353.engr.w�sc.edu/ser�al-�nterfaces/�2c/ 11/11

184
185
186
187
188
189
190
191
192
193
194
195
196

 // Check for error conditions
 if (myI2C->MCS & I2C_MCS_ERROR)
 {
 myI2C->MCS = I2C_MCS_STOP;
 return I2C_BUS_ERROR;
 }
 else
 {
 *data = myI2C->MDR;
 return I2C_OK;
 }
}

