
13.11.2017 I2C | Andro�d Th�ngs

https://developer.andro�d.com/th�ngs/sdk/p�o/�2c.html 1/5

The Inter-Integrated Circuit (https://en.wikipedia.org/wiki/I%C2%B2C) (IIC or I2C) bus connects simple
peripheral devices with small data payloads. Sensors and actuators are common use cases for I2C.
Examples include accelerometers, thermometers, LCD displays, and motor drivers.

I2C is a synchronous serial interface, which means it relies on a shared clock signal to synchronize data transfer

between devices. The device in control of triggering the clock signal is known as the master. All other connected

peripherals are known as slaves. Each device is connected to the same set of data signals to form a bus.

I2C devices connect using a 3-Wire interface consisting of:

Shared clock signal (SCL)

Shared data line (SDA)

Common ground reference (GND)

Because all data is transferred over one wire, I2C only supports half-duplex communication. All communication is

initiated by the master device, and the slave must respond once the master's transmission is complete.

I2C supports multiple slave devices connected along the same bus. Unlike SPI

(https://developer.android.com/things/sdk/pio/spi.html), slave devices are addressed using the I2C software protocol. Each

device is programmed with a unique address and only responds to transmissions the master sends to that address.

Every slave device must have an address, even if the bus contains only a single slave.

Managing the slave device connection
In order to open a connection to a particular I2C slave, you need to know the unique name of the bus. During the

initial stages of development, or when porting an app to new hardware, it's helpful to discover all the available

Android Developers

I2C

This site uses cookies to store your preferences for site-specific language and display options.

OK

https://en.wikipedia.org/wiki/I%C2%B2C
https://developer.android.com/things/sdk/pio/spi.html

13.11.2017 I2C | Andro�d Th�ngs

https://developer.andro�d.com/th�ngs/sdk/p�o/�2c.html 2/5

device names from PeripheralManagerService using getI2cBusList():

PeripheralManagerService manager = new PeripheralManagerService();
List<String> deviceList = manager.getI2cBusList();
if (deviceList.isEmpty()) {
 Log.i(TAG, "No I2C bus available on this device.");
} else {
 Log.i(TAG, "List of available devices: " + deviceList);
}

Once you know the target device name, use PeripheralManagerService to connect to that device. When you are

done communicating with the peripheral device, close the connection to free up resources. Additionally, you cannot

open a new connection to the device until the existing connection is closed. To close the connection, use the

device's close() method.

public class HomeActivity extends Activity {
 // I2C Device Name
 private static final String I2C_DEVICE_NAME = ...;
 // I2C Slave Address
 private static final int I2C_ADDRESS = ...;

 private I2cDevice mDevice;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 // Attempt to access the I2C device
 try {
 PeripheralManagerService manager = new PeripheralManagerService();
 mDevice = manager.openI2cDevice(I2C_DEVICE_NAME, I2C_ADDRESS);
 } catch (IOException e) {
 Log.w(TAG, "Unable to access I2C device", e);
 }
 }

 @Override
 protected void onDestroy() {
 super.onDestroy();

 if (mDevice != null) {
 try {
 mDevice.close();
 mDevice = null;
 } catch (IOException e) {
 Log.w(TAG, "Unable to close I2C device", e);
 }
 }
 }
}

13.11.2017 I2C | Andro�d Th�ngs

https://developer.andro�d.com/th�ngs/sdk/p�o/�2c.html 3/5

Note: The device name represents the I2C bus, and the address represents the individual slave on that bus.

Therefore, an I2cDevice is a connection to a specific slave device on the corresponding I2C bus.

Interacting with registers
I2C slave devices organize their contents into either readable or writable registers (individual bytes of data

referenced by an address value):

Readable registers - Contains data the slave wants to report to the master, such as sensor values or status �ags.

Writable registers - Contains configuration data that the master can control.

A common protocol implementation known as System Management Bus

(https://en.wikipedia.org/wiki/System_Management_Bus) (SMBus) exists on top of I2C to interact with register data in a

standard way. SMBus commands consist of two I2C transactions as follows:

The first transaction identifies the register address to access, and the second reads or writes the data at that

address. Logical data on a slave device may often take up multiple bytes, and thus encompass multiple register

addresses. The register address provided to the API is always the first register to reference.

Note: Per SMBus protocol, the device will send a "repeated start" condition between the address and data

transactions.

Peripheral I/O provides three types of SMBus commands for accessing register data:

Byte Data - readRegByte() and writeRegByte() Read or write a single 8-bit register value.

Word Data - readRegWord() and writeRegWord() Read or write two consecutive register values as a 16-bit little-

endian word. The first register address corresponds to the least significant byte (LSB) in the word, followed by

the most significant byte (MSB).

Block Data - readRegBuffer() and writeRegBuffer() Read or write up to 32 consecutive register values as an

array.

// Modify the contents of a single register
public void setRegisterFlag(I2cDevice device, int address) throws IOException {
 // Read one register from slave
 byte value = device.readRegByte(address);
 // Set bit 6
 value |= 0x40;
 // Write the updated value back to slave
 device.writeRegByte(address, value);
}

// Read a register block
public byte[] readCalibration(I2cDevice device, int startAddress) throws IOException {
 // Read three consecutive register values

https://en.wikipedia.org/wiki/System_Management_Bus

13.11.2017 I2C | Andro�d Th�ngs

https://developer.andro�d.com/th�ngs/sdk/p�o/�2c.html 4/5

 byte[] data = new byte[3];
 device.readRegBuffer(startAddress, data, data.length);
 return data;
}

Transferring raw data
When interacting with an I2C peripheral that defines its registers differently than SMBus -- or perhaps doesn't use

registers at all -- use the raw read() and write() methods for full control over the data bytes transmitted across the

wire. These methods will execute a single I2C transaction as follows:

With raw transfers, the device will send a single start condition before the transfer and a single stop condition after.

It is not possible to combine multiple transactions with a "repeated start" condition.

Note: There is no explicit maximum length that a raw transaction can handle, but the I2C controller hardware on

your device may have a limit on the number of bytes it can process. Consult your device hardware

documentation if your peripheral requires large data transfers.

The following code sample show you how to construct a raw byte buffer and write it to an I2C slave:

public void writeBuffer(I2cDevice device, byte[] buffer) throws IOException {
 int count = device.write(buffer, buffer.length);
 Log.d(TAG, "Wrote " + count + " bytes over I2C.");
}

https://twitter.com/AndroidDev
https://plus.google.com/+AndroidDevelopers
https://www.youtube.com/user/androiddevelopers

13.11.2017 I2C | Andro�d Th�ngs

https://developer.andro�d.com/th�ngs/sdk/p�o/�2c.html 5/5

