
Serial Communication

Separate wires for transmit & receive

Asynchronous communication

asynchronous – no clock
Data represented by setting
HIGH/LOW at given times

Synchronous communication

Synchronous – with clock
Data represented by setting

HIGH/LOW when “clock” changes

A single clock wire & data wire for
each direction like before

Device A Device B

TX

RX

RX

TX

Device A Device B

clock

data A->B

data B->A

Each device must have good “rhythm” Neither needs good rhythm, but one is the conductor

Is one better than the other? It depends on your application. Async is good if there are only two
devices and they’re both pre-configured to agree on the speed (like your Arduino sketches)

Synchronous is generally better for faster speeds (because you don’t need an accurate clock, just
the ability to watch the clock wire).

I2C, aka “Two-wire”

Master
device

Peripheral
device 1

Peripheral
device 2

Peripheral
device N

• • •

dataSDA

clockSCK

Synchronous serial bus with shared a data line

• Up to 127 devices on one bus
• Up to 1Mbps data rate
• Really simple protocol (compared to USB,Ethernet,etc)

• Most microcontrollers have it built-in

a little network for your gadgets

The shared data line means the devices have to agree on when they should “talk” on it. Like how on
CBs you say “over” and “over & out” to indicate you’re finished so the other person talk.

See “Introduction to I2C”: http://www.embedded.com/story/OEG20010718S0073
“I2C” stands for “Inter-Integrated Circuit”, but no one calls it that
And if your microcontroller doesn’t have I2C hardware built-in, you can fake it by hand in software
(for master devices anyway)

Many I2C devices

touch sensor compass

fm transmitter

non-volatile
memory

LCD display
temperature &
humidity sensor

And many others
(gyros,keyboards, motors,...)

Images from Sparkfun.com,except LCD from matrixorbital.com

Obligatory BlinkM Promo
I2C Smart LED

Does all the hard PWM & waveform generation for you
You should be able to buy these from Sparkfun.com in a month or so.

Nintendo Wii Nunchuck

• Standard I2C interface

• 3-axis accelerometer with
10-bit accuracy

• 2-axis analog joystick with
8-bit A/D converter

• 2 buttons

• $20

If you look at the architecture for the Nintendo Wii and its peripherals, you see an almost un-Nintendo adherence
to standards. The Wii controllers are the most obvioius examples of this. The Wii controller bus is standard I2C.
The Wii remote speaks Bluetooth HID to the Wii (or your Mac or PC)

Because it uses standard I2C, it’s easy to make the Nunchuck work with Arduino, Basic Stamp or most other
microcontrollers.

See: http://www.wiili.org/index.php/Wiimote/Extension_Controllers/Nunchuk
and: http://www.windmeadow.com/node/42
and: http://todbot.com/blog/2007/10/25/boarduino-wii-nunchuck-servo/

And then there’s the Wii Remote, besides Bluetooth HID, it also has accelerometers, buttons, speaker, memory, and
is I2C master.

Accelerometer?
• Measures acceleration

(changes in speed)

• Like when the car
pushes you into the seat

• Gravity is acceleration

• So, also measures tilt

horizontal tilt right tilt left

Nunchuck Accelerometer

X
Z

Y

Wii Remote & Nunchuck
accelerometer axes

I’m not sure if I have the Nunchuck one right.

Wiimote axis image from http://www.wiili.org/index.php/Wiimote

I2C on Arduino

• I2C built-in on Arduino’s
ATmega168 chip

• Use “Wire” library to access it

• Analog In 4 is SDA signal

• Analog In 5 is SCK signal

SDA

SCK

Arduino “Wire” library
Writing Data

Start sending

Join I2C bus
(as master)

Send data

Load Wire library

Stop sending

And what the various commands do are documented in the instructions / datasheet for a particular
device.

Arduino “Wire” library
Reading Data

Request data from device

Join I2C bus
(as master)

Get data

What kinds of interactions you can have depends on
the device you’re talking to

Most devices have several “commands”

And what the various commands do are documented in the instructions / datasheet for a particular
device.

Wiring up the Nunchuck
We could hack off the connector

and use the wires directly

But instead let’s use this
little adapter board

Wii Nunchuck Adapter

SCK GND

+V SDA

n/c

n/c

Nunchuck Pinout

(looking into Nunchuck connector)

Adapter Pinout

+V SCK

SDAGND

Note there *are* labels on the adapter, but they’re wrong. So you’ll have to trust the diagrams
above

Wiring it Up

GND SDA
+5V SCK

SDA (pin 4)

SCK (pin5)

Pluggin’ in the ‘chuck

Trying the Nunchuck
“NunchuckPrint”

Read the Nunchuck
every 1/10th of a second
& print out all the data:
- joystick position (x,y)
- accelerometer (x,y,z)
- buttons Z,C

X
Z

Y

Uses the beginnings of an Arduino library I’m writing.

Adding a Servo

Move the servo by
moving your arm

“NunchuckServo”

You’re a cyborg!

Also press the Z button to
flash the pin 13 LED

Utilizes the task slicing mentioned before

Nunchuck Servo

Twist the
nunchuck

and the servo
matches your

movement

Segway Emulator

Same basic code as NunchuckServo.
For details see: http://todbot.com/blog/2007/10/25/boarduino-wii-nunchuck-servo/

Going Further

• Servos

• Hook several together to create a multi-
axis robot arm

• Make a “servo recorder” to records your
arm movements to servo positions and
plays them back

• Great for holiday animatronics

Going Further

• I2C devices

• Try out some other devices

• Just string them on the same two wires used
for the Nunchuck

• Cooperative Multitasking

• Try making a theremin with nunchuck & piezo

• See if previous examples can be made more
responsive

Going Further

• Nunchuck

• It’s a freespace motion sensor. Control
anything like you’re waving a magic wand!

• What about the joystick? We didn’t even
get a chance to play with that

• Alternative input device to your
computer: control Processing, etc.

Summary
You’ve learned many different physical building blocks

LEDs

switches/buttons
resistive sensors

motors

piezos

servos

X
Z

Y

accelerometers

Summary
And you’ve learned many software building blocks

pulse width
modulation

serial
communication

digital I/O

analog I/O

data driven
code

frequency
modulation

multiple tasks

I2C

Summary

Hope you had fun and continue playing with Arduino

Feel free to contact me to chat about this stuff

Tod E. Kurt

tod@todbot.com

END Class 4

http://todbot.com/blog/bionicarduino/

Feel free to email me if you have any questions.

mailto:tod@todbot.com
mailto:tod@todbot.com
mailto:tod@todbot.com
mailto:tod@todbot.com

