
 2000 Microchip Technology Inc. Preliminary DS00734A-page 1

AN734

INTRODUCTION

Many devices in the PICmicro family have a Synchro-
nous Serial Port (SSP) or Master Synchronous Serial
Port (MSSP). These peripherals can be used to imple-
ment the SPITM or I2C communication protocols. The
purpose of this application note is to provide the reader
with a better understanding of the I2C protocol and to
show how PICmicro devices with the SSP or MSSP
modules are used as a Slave device on an I2C bus.

For more information on the I2C bus specification, or
the PICmicro SSP and MSSP peripherals, you may
refer to sources indicated in the References section.

THE I2C BUS SPECIFICATION

Although a complete discussion of the I2C bus specifi-
cation is outside the scope of this application note,
some of the basics will be covered here. The
Inter-Integrated-Circuit, or I2C bus specification was
originally developed by Philips Inc. for the transfer of
data between ICs at the PCB level. The physical inter-
face for the bus consists of two open-collector lines;
one for the clock (SCL) and one for data (SDA). The
bus may have a one Master/many Slave configuration
or may have multiple Master devices. The Master
device is responsible for generating the clock source
for the linked Slave devices.

The I2C protocol supports either a 7-bit addressing
mode, or a 10-bit addressing mode, permitting up to
128 or 1024 physical devices to be on the bus, respec-
tively. In practice, the bus specification reserves certain
addresses, so slightly fewer usable addresses are
available. For example, the 7-bit addressing mode
allows 112 usable addresses.

All data transfers on the bus are initiated by the Master
device, which always generates the clock signal on the
bus. Data transfers are performed on the bus eight bits
at a time, MSb first. There is no limit to the amount of
data that can be sent in one transfer.

The I2C protocol includes a handshaking mechanism.
After each 8-bit transfer, a 9th clock pulse is sent by the
Master. At this time, the transmitting device on the bus
releases the SDA line and the receiving device on the
bus acknowledges the data sent by the transmitting

device. An ACK (SDA held low) is sent if the data was
received successfully, or a NACK (SDA left high) is sent
if it was not received successfully.

All changes on the SDA line must occur while the SCL
line is low. This restriction allows two unique conditions
to be detected on the bus; a START sequence (S) and
a STOP sequence (P). A START sequence occurs
when the Master pulls the SDA line low, while the SCL
line is high. The START sequence tells all Slaves on
the bus that address bytes are about to be sent. The
STOP sequence occurs when the SDA line goes high
while the SCL line is high, and it terminates the trans-
mission. Slave devices on the bus should reset their
receive logic after the STOP sequence has been
detected.

The I2C protocol also permits a Repeated Start condi-
tion (Rs), which allows the Master device on the bus to
perform a START sequence, without a STOP sequence
preceding it. The Repeated Start allows the Master
device to start a new data transfer without releasing
control of the bus.

A typical I2C write transmission would proceed as
shown in Figure 1. In this example, the Master device
will write two bytes to a Slave device. The transmission
is started when the Master initiates a START condition
on the bus. Next, the Master sends an address byte to
the Slave. The upper seven bits of the address byte
contain the Slave address. The LSb of the address byte
specifies whether the I2C operation will be a read
(LSb = 1), or a write (LSb = 0). On the ninth clock
pulse, the Master releases the SDA line so the Slave
can acknowledge the reception. If the address byte
was received by the Slave and was the correct
address, the Slave responds with an ACK by holding
the SDA line low. Assuming an ACK was received, the
Master sends out the data bytes. On the ninth clock
pulse after each data byte, the Slave responds with an
ACK. After the last data byte, a NACK is sent by the
Slave to the Master to indicate that no more bytes
should be sent. After the NACK pulse, the Master ini-
tiates the STOP condition to free the bus.

A read operation is performed similar to the write oper-
ation and is shown in Figure 2. In this case, the R/W bit
in the address byte is set to indicate a read operation.
After the address byte is received, the Slave device
sends an ACK pulse and holds the SCL line low. By
holding the SCL line, the Slave can take as much time
as needed to prepare the data to be sent back to the
Master. When the Slave is ready, it releases SCL and
the Master device clocks the data from the Slave buffer.

Author: Stephen Bowling
Microchip Technology Incorporated

Using the PICmicro® SSP for Slave I2CTM Communication

AN734

DS00734A-page 2 Preliminary  2000 Microchip Technology Inc.

On the ninth clock pulse, the Slave latches the value of
the ACK bit received from the Master. If an ACK pulse
was received, the Slave must prepare the next byte of
data to be transmitted. If a NACK was received, the
data transmission is complete. In this case, the Slave
device should wait for the next START condition.

For many I2C peripherals, such as non-volatile
EEPROM memory, an I2C write operation and a read
operation are done in succession. For example, the
write operation specifies the address to be read and the
read operation gets the byte of data. Since the Master
device does not release the bus after the memory
address is written to the device, a Repeated Start
sequence is performed to read the contents of the
memory address.

THE PICmicro SSP MODULE

A block diagram of the SSP module for I2C Slave mode
is shown in Figure 3. Key control and status bits
required for I2C Slave communication are provided in
the following special function registers:

- SSPSTAT
- SSPCON

- PIR1 (interrupt flag bit)
- PIE1 (interrupt enable bit)

Some of the bit functions in these registers vary,
depending on whether the SSP module is used for I2C
or SPI communications. The functionality of each for
I2C mode is described here. For a complete descrip-
tion of each bit function, refer to the appropriate device
data sheet.

FIGURE 1: TYPICAL I2C WRITE TRANSMISSION (7-BIT ADDRESS)

FIGURE 2: TYPICAL I2C READ TRANSMISSION (7-BIT ADDRESS) USING THE PICmicro SSP

P98765

D0D1D2D3D4D5D6D7

S

A7 A6 A5 A4 A3 A2 A1SDA

SCL 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4

ACK Receiving DataReceiving Data

D0D1D2D3D4D5D6D7
ACK

R/W=0
Receiving Address

START

NACK

STOP
Acknowledge

Clock
Acknowledge

Clock
Acknowledge

Clock

SDA

SCL

A7 A6 A5 A4 A3 A2 A1

ACK

D7 D6 D5 D4 D3 D2 D1 D0

NACKTransmitting Data
R/W = 1

Receiving Address

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 PS

START STOP
Acknowledge

Clock
Acknowledge

Clock

 2000 Microchip Technology Inc. Preliminary DS00734A-page 3

AN734

FIGURE 3: PICmicro SSP MODULE BLOCK DIAGRAM (I2C SLAVE MODE)

SSP Bits That Indicate Module Status

BF (SSPSTAT<0>)

The BF (buffer full) bit tells the user whether a byte of
data is currently in the SSP buffer register, SSPBUF.
This bit is cleared automatically when the SSPBUF reg-
ister is read, or when a byte to be transmitted is com-
pletely shifted out of the register. The BF bit will
become set under the following circumstances:

- When an address byte is received with the
LSb cleared. This will be the first byte sent
by the Master device during an I2C write
operation.

- Each time a data byte is received during an
I2C write to the Slave device.

- Each time a byte of data is written to
SSPBUF to be transmitted to the Master
device. The BF bit will be cleared automati-
cally when all bits have been shifted from
SSPBUF to the Master device.

There is one condition for the SSP module when the BF
bit does not become set as one might expect. This con-
dition occurs when the address byte for an I2C read
operation is received by the Slave (LSb = 1). For read
operations, the BF bit indicates the status of data writ-
ten to SSPBUF for transmission to the Master device.

UA (SSPSTAT<1>)

The UA (Update Address) bit is used only in the 10-bit
address modes. In the 10-bit address mode, an I2C
Slave address must be sent in two bytes. The upper
half of the 10-bit address (1111 0 A9 A8 0) first
loaded into SSPADD for initial match detection. This
particular address code is reserved in the I2C protocol
for designating the upper half of a 10-bit address.
When an address match occurs, the SSP module will

set the UA bit to indicate that the lower half of the
address should be loaded into SSPADD for match
detection.

R/W (SSPSTAT<2>)

The R/W (Read/Write) bit tells the user whether the
Master device is reading from, or writing to, the Slave
device. This bit reflects the state of the LSb in the
address byte that is sent by the Master. The state of
the R/W bit is only valid for the duration of a particular
I2C message and will be reset by a STOP condition,
START condition, or a NACK from the Master device.

S (SSPSTAT<3>)

The S (START) bit is set if a START condition occurred
last on the bus. The state of this bit will be the inverse
of the P (STOP) bit, except when the module is first ini-
tialized and both bits are cleared.

P (SSPSTAT<4>)

The P (STOP) bit is set if a STOP condition occurred
last on the bus. The state of this bit will be the inverse
of the S (START) bit, except when the module is first
initialized and both bits are cleared. The P bit can be
used to determine when the bus is idle.

D/A (SSPSTAT<5>)

The D/A (Data/Address) bit indicates whether the last
byte of data received by the SSP module was a data
byte or an address byte. For read operations, the last
byte sent to the Master device was a data byte when
the D/A bit is set.

WCOL (SSPCON<7>)

The WCOL (Write Collision) bit indicates that SSPBUF
was written while the previously written word is still
transmitting. The previous contents of SSPBUF are not
changed when the write collision occurs. The WCOL bit
must be cleared in software.

Read Write

SSPSR reg

Match detect

SSPADD reg

START and
STOP bit detect

SSPBUF reg

Internal
data bus

Address Match or

Set, Reset
S, P bits

(SSPSTAT reg)

SCL

shift
clock

MSb LSbSDA

General Call Detected

AN734

DS00734A-page 4 Preliminary  2000 Microchip Technology Inc.

SSPOV (SSPCON<6>)

The SSPOV (SSP overflow bit) indicates that a new
byte was received while SSPBUF was still holding the
previous data. In this case, the SSP module will not
generate an ACK pulse and SSPBUF will not be
updated with the new data. Regardless of whether the
data is to be used, the user must read SSPBUF when-
ever the BF bit becomes set, to avoid a SSP overflow
condition. The user must read SSPBUF and clear the
SSPOV bit to properly clear an overflow condition. If
the user reads SSPBUF to clear the BF bit, but does
not clear the SSPOV bit, the next byte of data received
will be loaded into SSPBUF but the module will not
generate an ACK pulse.

SSPIF (PIR1<3>)

The SSPIF (SSP interrupt flag) bit indicates that an I2C
event has completed. The user must poll the status
bits described here to determine what event occurred
and the next action to be taken. The SSPIF bit must be
cleared by the user.

SSP Bits for Module Control

SSPEN (SSPCON<5>)

The SSPEN (SSP enable bit) enables the SSP module
and configures the appropriate I/O pins as serial port
pins.

CKE (SSPSTAT<6>)

The CKE (Clock edge) bit has no function when the
SSP module is configured for I2C mode and should be
cleared.

SMP (SSPSTAT<7>)

The SMP (Sample phase) bit has no function when the
SSP module is configured for I2C mode and should be
cleared.

CKP (SSPCON<4>)

The CKP (Clock polarity) bit is used for clock stretching
in the I2C protocol. When the CKP bit is cleared, the
Slave device holds the SCL pin low so that the Master
device on the bus is unable to send clock pulses. Dur-
ing clock stretching, the Master device will attempt to
send clock pulses until the clock line is released by the
Slave device.

Clock stretching is useful when the the Slave device
can not process incoming bytes quickly enough, or
when SSPBUF needs to be loaded with data to be
transmitted to the Master device. The SSP module
performs clock stretching automatically when data is
read by the Master device. The CKP bit will be cleared
by the module after the address byte and each subse-
quent data byte is read. After SSPBUF is loaded, the
CKP bit must be set in software to release the clock and
allow the next byte to be transferred.

SSPM3:SSPM0 (SSPCON<3:0>)

The SSPM3:SSPM0 (SSP mode) bits are used to con-
figure the SSP module for the SPI or I2C protocols. For
specific values, refer to the appropriate device data
sheet.

SSPIE (PIE1<3>)

The SSPIE (SSP interrupt enable) bit enables SSP
interrupts. The appropriate global and peripheral inter-
rupt enable bits must be set in conjunction with this bit
to allow interrupts to occur.

Configuring the SSP for I2C Slave Mode

Before enabling the module, ensure that the pins used
for SCL and SDA are configured as inputs by setting
the appropriate TRIS bits. This allows the module to
configure and drive the I/O pins as required by the I2C
protocol.

The SSP module is configured and enabled using the
SSPCON register. The SSP module can be configured
for the following I2C Slave modes:

1. I2C Slave mode, 7-bit address

2. I2C Slave mode, 10-bit address
3. I2C Slave mode, 7-bit address, START and

STOP interrupts enabled
4. I2C Slave mode, 10-bit address, START and

STOP interrupts enabled

Of these four modes of operation, the first two are most
commonly used in a Slave device application. The sec-
ond two modes provide interrupts when START and
STOP conditions are detected on the bus and are use-
ful for detecting when the I2C bus is idle. After the bus
is detected idle, Slave device could become a Master
device on the bus. Since there is no hardware support
for Master I2C communications in the SSP module, the
Master communication would need to be implemented
in firmware.

Setting the Slave Address

The address of the Slave node must be written to the
SSPADD register (see Figure 3). For 7-bit addressing
mode, bits <7:1> determine the Slave address value.
The LSb of the address byte is not used for address
matching; this bit determines whether the transaction
on the bus will be a read or write. Therefore, the value
written to SSPADD will always have an even value
(LSb = 0). Effectively, each Slave node uses two
addresses; one for write operations and another for
read operations.

 2000 Microchip Technology Inc. Preliminary DS00734A-page 5

AN734

Handling SSP Events in Software

Using the SSP module for Slave I2C communication is,
in general, a sequential process that requires the firm-
ware to perform some action after each I2C event. The
SSPIF bit indicates an I2C event on the bus has com-
pleted. The SSPIF bit may be polled in software or can
be configured as an interrupt source. Each time the
SSPIF bit is set, the I2C event must be identified by
testing various bits in the SSPSTAT register. For the
purposes of explanation, it is helpful to identify all the
possible states and discuss each one individually.
There are a total of 5 valid states for the SSP module
after an I2C event.

State 1: Master Write, Last Byte was an Address

The Master device on the bus has begun a new write
operation by initiating a START or RESTART condition
on the bus, then sending the Slave I2C address byte.
The LSb of the address byte is 0 to indicate that the
Master wishes to write data to the Slave. The bits in the
SSPSTAT register will have the following values:

- S = 1 (START condition occurred last)

- R/W = 0 (Master writing data to the Slave)
- D/A = 0 (Last byte was an address)
- BF = 1 (The buffer is full)

At this time, the SSP buffer is full and holds the previ-
ously sent address byte. The SSPBUF register must be
read at this time to clear the BF bit, even if the address
byte is to be discarded. If the SSPBUF is not read, the
subsequent byte sent by the Master will cause an SSP
overflow to occur and the SSP module will NACK the
byte.

State 2: Master Write, Last Byte was Data

After the address byte is sent for an I2C write operation
(State 1), the Master may write one or more data bytes
to the Slave device. If SSPBUF was not full prior to the
write, the Slave node SSP module will generate an
ACK pulse on the 9th clock edge. Otherwise, the
SSPOV bit will be set and the SSP module will NACK
the byte. The bits in the SSPSTAT register will have the
following values after the Master writes a byte of data
to the Slave:

- S = 1 (START condition occurred last)
- R/W = 0 (Master writing data to the Slave)
- D/A = 1 (Last byte was a data byte)

- BF = 1 (The buffer is full)

State 3: Master Read, Last Byte was an Address

The Master device on the bus has begun a new read
operation by initiating a START or a RESTART condi-
tion on the bus, then sending the Slave I2C address
byte. The LSb of the address byte is 1 to indicate that
the Master wishes to read data from the Slave. The bits
in the SSPSTAT register will have the following values:

- S = 1 (START condition occurred last)
- R/W = 1 (Master reading data from the Slave)
- D/A = 0 (Last byte was an address)

- BF = 0 (The buffer is empty)

At this time, the SSP buffer is ready to be loaded with
data to be sent to the Master. The CKP bit is also
cleared to hold the SCL line low. The Slave data is sent
to the Master by loading SSPBUF and then setting the
CKP bit to release the SCL line.

State 4: Master Read, Last Byte was Data

State 4 occurs each time the Master has previously
read a byte of data from the Slave and wishes to read
another data byte. The bits in the SSPSTAT register will
have the following values:

- S = 1 (START condition occurred last)

- R/W = 1 (Master reading data from the Slave)
- D/A = 1 (Last byte sent was a data byte)
- BF = 0 (The buffer is empty)

At this time, the SSP buffer is ready to be loaded with
data to be sent to the Master. The CKP bit is also
cleared to hold the SCL line low. The Slave data is sent
to the Master by loading SSPBUF and then setting the
CKP bit to release the SCL line.

State 5: Master NACK

State 5 occurs when the Master has sent a NACK in
response to data that has been received from the Slave
device. This action indicates that the Master does not
wish to read further bytes from the Slave. The NACK
signals the end of the I2C message and has the effect
of resetting the Slave I2C logic. The bits in the SSP-
STAT register will have the following values:

- S = 1 (START condition occurred last)
- R/W = 0 (R/W bit is reset by Slave logic)

- D/A = 1 (Last byte sent was a data byte)
- BF = 0 (The buffer is empty)

The NACK event is identified because the R/W bit is
reset, which causes the bits in the SSPSTAT register to
be in conflicting states. Specifically, the status bits indi-
cate that a data byte has been received from the Mas-
ter and the buffer is empty.

AN734

DS00734A-page 6 Preliminary  2000 Microchip Technology Inc.

SSP Error Handling

Each time SSPBUF is read in the Slave firmware, the
user should check the SSPOV bit to ensure no recep-
tion overflows have occurred. If an overflow occurred,
the SSPOV bit must be cleared in software and
SSPBUF must be read for further byte receptions to
take place.

The action that is performed after a SSP overflow will
depend on the application. The Slave logic will NACK
the Master device when an overflow occurs. In a typi-
cal application, the Master may try to resend the data
until an ACK from the Slave is detected.

After writing data to SSPBUF, the user should check
the WCOL bit to ensure that a write collision did not
occur. In practice, there will be no write collisions if the
application firmware only writes to SSPBUF during
states when the BF bit is cleared and the Slave device
is transmitting data to the Master.

SOURCE CODE EXAMPLE

The Slave I2C source code provided in Appendix A was
written in Microchip assembly language and will oper-
ate on any device in the PIC16CXXX family that has a
SSP or MSSP module. The source code example is a
simple application that receives characters transmitted
by a Master device and stores them in a data buffer. At
the beginning of each new write operation by the Mas-
ter, the buffer contents are cleared. When the Master
device begins a new read, the characters in the buffer
will be returned. With minor modifications, the source
code provided can be adapted to most applications that
require I2C communications.

Each of the 5 SSP states discussed in this document
are identified by XORing the bits in the SSPSTAT reg-
ister with predetermined mask values. Once the state
has been identified, the appropriate action is taken. All
undefined states are handled by branching execution
to a software trap.

I2C ACRONYMS

ACK - Acknowledge

BRG - Baud Rate Generator

BSSP - Basic Synchronous Serial Port

F/W - Firmware

I2C - Inter-Integrated Circuit

ISR - Interrupt Service Routine

MCU - Microcontroller Unit

MSSP - Master Synchronous Serial Port

NACK - Not Acknowledge

SDA - Serial Data Line

SCL - Serial Clock Line

SSP - Synchronous Serial Port

REFERENCES

The I2C Bus Specification, Philips Semiconductor,
Version 2.1, 2000,
http://www-us.semiconductors.com/i2c/

PICmicroTM Mid-Range MCU Reference Manual,
Microchip Technology Inc., Document Number
DS33023

AN735, "Using the PICmicro MSSP module for Master
I2C Communications", Microchip Technology Inc., Doc-
ument Number DS00735A

AN578, "Use of the SSP Module in the I2C Multi-Master
Environment", Microchip Technology Inc., Document
Number DS00578B

 2000 Microchip Technology Inc. Preliminary DS00734A-page 7

AN734

Software License Agreement

The software supplied herewith by Microchip Technology Incorporated (the “Company”) for its PICmicro® Microcontroller is
intended and supplied to you, the Company’s customer, for use solely and exclusively on Microchip PICmicro Microcontroller prod-
ucts.

The software is owned by the Company and/or its supplier, and is protected under applicable copyright laws. All rights are reserved.
Any use in violation of the foregoing restrictions may subject the user to criminal sanctions under applicable laws, as well as to civil
liability for the breach of the terms and conditions of this license.

THIS SOFTWARE IS PROVIDED IN AN “AS IS” CONDITION. NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATU-
TORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICU-
LAR PURPOSE APPLY TO THIS SOFTWARE. THE COMPANY SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.

APPENDIX A: EXAMPLE SLAVE I2C SOURCE CODE

;---
; File: an734.asm
;
; Written By: Stephen Bowling, Microchip Technology
;
; Version: 1.00
;
; Assembled using Microchip Assembler
;
; Functionality:
;
; This code implements the basic functions for an I2C slave device
; using the SSP module. All I2C functions are handled in an ISR.
; Bytes written to the slave are stored in a buffer. After a number
; of bytes have been written, the master device can then read the
; bytes back from the buffer.
;
; Variables and Constants used in the program:
;
; The start address for the receive buffer is stored in the variable
; ’RXBuffer’. The length of the buffer is denoted by the constant
; value ’RX_BUF_LEN’. The current buffer index is stored in the
; variable ’Index’.
;
;--
;
; The following files should be included in the MPLAB project:
;
; an734.asm-- Main source code file
;
; 16f872.lkr-- Linker script file
; (change this file for the device
; you are using)
;
;---
;---
; Include Files
;---

#include <p16f872.inc> ; Change to device that you are using.

;---
;Constant Definitions
;---

#define NODE_ADDR 0x02 ; I2C address of this node
; Change this value to address that
; you wish to use.

AN734

DS00734A-page 8 Preliminary  2000 Microchip Technology Inc.

;---
; Buffer Length Definition
;---

#define RX_BUF_LEN 32 ; Length of receive buffer

;---
; Variable declarations
;---

udata

WREGsave res 1
STATUSsave res 1
FSRsave res 1
PCLATHsave res 1

Index res 1 ; Index to receive buffer
Temp res 1 ;
RXBuffer res RX_BUF_LEN ; Holds rec’d bytes from master

; device.

;---
; Vectors
;---

STARTUP code
nop
goto Startup ;
nop ; 0x0002
nop ; 0x0003
goto ISR ; 0x0004

PROG code

;---
; Macros
;---

memset macro Buf_addr,Value,Length

movlw Length ; This macro loads a range of data memory
movwf Temp ; with a specified value. The starting
movlw Buf_addr ; address and number of bytes are also
movwf FSR ; specified.

SetNext movlw Value
movwf INDF
incf FSR,F
decfsz Temp,F
goto SetNext

endm

LFSR macro Address,Offset ; This macro loads the correct value
movlw Address ; into the FSR given an initial data
movwf FSR ; memory address and offset value.
movf Offset,W
addwf FSR,F

endm

;---
; Main Code
;---

Startup
bcf STATUS,RP1
bsf STATUS,RP0

 2000 Microchip Technology Inc. Preliminary DS00734A-page 9

AN734

call Setup
Main clrwdt ; Clear the watchdog timer.

goto Main ; Loop forever.

;---
; Interrupt Code
;---

ISR
movwf WREGsave ; Save WREG
movf STATUS,W ; Get STATUS register
banksel STATUSsave ; Switch banks, if needed.
movwf STATUSsave ; Save the STATUS register
movf PCLATH,W;
movwf PCLATHsave ; Save PCLATH
movf FSR,W ;
movwf FSRsave ; Save FSR

banksel PIR1
btfss PIR1,SSPIF ; Is this a SSP interrupt?
goto $; No, just trap here.
bcf PIR1,SSPIF
call SSP_Handler ; Yes, service SSP interrupt.

banksel FSRsave
movf FSRsave,W ;
movwf FSR ; Restore FSR
movf PCLATHsave,W ;
movwf PCLATH ; Restore PCLATH
movf STATUSsave,W ;
movwf STATUS ; Restore STATUS
swapf WREGsave,F ;
swapf WREGsave,W ; Restore WREG
retfie ; Return from interrupt.

;---
Setup
;
; Initializes program variables and peripheral registers.
;---

banksel PCON
bsf PCON,NOT_POR
bsf PCON,NOT_BOR
banksel Index ; Clear various program variables
clrf Index
clrf PORTB
clrf PIR1
banksel TRISB
clrf TRISB

movlw 0x36 ; Setup SSP module for 7-bit
banksel SSPCON
movwf SSPCON ; address, slave mode
movlw NODE_ADDR
banksel SSPADD
movwf SSPADD
clrf SSPSTAT
banksel PIE1 ; Enable interrupts
bsf PIE1,SSPIE
bsf INTCON,PEIE ; Enable all peripheral interrupts
bsf INTCON,GIE ; Enable global interrupts

bcf STATUS,RP0
return

AN734

DS00734A-page 10 Preliminary  2000 Microchip Technology Inc.

;---
SSP_Handler
;---
; The I2C code below checks for 5 states:
;---
; State 1: I2C write operation, last byte was an address byte.
;
; SSPSTAT bits: S = 1, D_A = 0, R_W = 0, BF = 1
;
; State 2: I2C write operation, last byte was a data byte.
;
; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 1
;
; State 3: I2C read operation, last byte was an address byte.
;
; SSPSTAT bits: S = 1, D_A = 0, R_W = 1, BF = 0
;
; State 4: I2C read operation, last byte was a data byte.
;
; SSPSTAT bits: S = 1, D_A = 1, R_W = 1, BF = 0
;
; State 5: Slave I2C logic reset by NACK from master.
;
; SSPSTAT bits: S = 1, D_A = 1, R_W = 0, BF = 0
;
; For convenience, WriteI2C and ReadI2C functions have been used.
;--

banksel SSPSTAT
movf SSPSTAT,W ; Get the value of SSPSTAT
andlw b’ 00101101’ ; Mask out unimportant bits in SSPSTAT.
banksel Temp ; Put masked value in Temp
movwf Temp ; for comparision checking.

State1: ; Write operation, last byte was an
movlw b’00001001’ ; address, buffer is full.
xorwf Temp,W ;
btfss STATUS,Z ; Are we in State1?
goto State2 ; No, check for next state.....

memset RXBuffer,0,RX_BUF_LEN ; Clear the receive buffer.
clrf Index ; Clear the buffer index.
call ReadI2C ; Do a dummy read of the SSPBUF.
return

 2000 Microchip Technology Inc. Preliminary DS00734A-page 11

AN734

State2: ; Write operation, last byte was data,
movlw b’00101001’ ; buffer is full.
xorwf Temp,W
btfss STATUS,Z ; Are we in State2?
goto State3 ; No, check for next state.....

LFSR RXBuffer,Index ; Point to the buffer.
call ReadI2C ; Get the byte from the SSP.
movwf INDF ; Put it in the buffer.
incf Index,F ; Increment the buffer pointer.
movf Index,W ; Get the current buffer index.
sublw RX_BUF_LEN ; Subtract the buffer length.
btfsc STATUS,Z ; Has the index exceeded the buffer length?
clrf Index ; Yes, clear the buffer index.
return

State3: ; Read operation, last byte was an
movlw b’00001100’ ; address, buffer is empty.
xorwf Temp,W
btfss STATUS,Z ; Are we in State3?
goto State4 ; No, check for next state.....

clrf Index ; Clear the buffer index.
LFSR RXBuffer,Index ; Point to the buffer
movf INDF,W ; Get the byte from buffer.
call WriteI2C ; Write the byte to SSPBUF
incf Index,F ; Increment the buffer index.
return

State4: ; Read operation, last byte was data,
movlw b’00101100’ ; buffer is empty.
xorwf Temp,W
btfss STATUS,Z ; Are we in State4?
goto State5 ; No, check for next state....

movf Index,W ; Get the current buffer index.
sublw RX_BUF_LEN ; Subtract the buffer length.
btfsc STATUS,Z ; Has the index exceeded the buffer length?
clrf Index ; Yes, clear the buffer index.
LFSR RXBuffer,Index ; Point to the buffer
movf INDF,W ; Get the byte
call WriteI2C ; Write to SSPBUF
incf Index,F ; Increment the buffer index.
return

State5:
movlw b’00101000’ ; A NACK was received when transmitting
xorwf Temp,W ; data back from the master. Slave logic
btfss STATUS,Z ; is reset in this case. R_W = 0, D_A = 1
goto I2CErr ; and BF = 0
return ; If we aren’t in State5, then something is

; wrong.

I2CErr nop
banksel PORTB ; Something went wrong! Set LED
bsf PORTB,7 ; and loop forever. WDT will reset
goto $; device, if enabled.
return

AN734

DS00734A-page 12 Preliminary  2000 Microchip Technology Inc.

;---
; WriteI2C
;---

WriteI2C
banksel SSPSTAT
btfsc SSPSTAT,BF ; Is the buffer full?
goto WriteI2C ; Yes, keep waiting.
banksel SSPCON ; No, continue.

DoI2CWrite
bcf SSPCON,WCOL; Clear the WCOL flag.
movwf SSPBUF ; Write the byte in WREG
btfsc SSPCON,WCOL; Was there a write collision?
goto DoI2CWrite
bsf SSPCON,CKP ; Release the clock.
return

;---
ReadI2C
;---

banksel SSPBUF
movf SSPBUF,W ; Get the byte and put in WREG
return

end ; End of file

 2000 Microchip Technology Inc. Preliminary DS00734A-page 13

AN734

NOTES:

 2002 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is intended through suggestion only
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
No representation or warranty is given and no liability is
assumed by Microchip Technology Incorporated with respect
to the accuracy or use of such information, or infringement of
patents or other intellectual property rights arising from such
use or otherwise. Use of Microchip’s products as critical com-
ponents in life support systems is not authorized except with
express written approval by Microchip. No licenses are con-
veyed, implicitly or otherwise, under any intellectual property
rights.

Trademarks

The Microchip name and logo, the Microchip logo, FilterLab,
KEELOQ, microID, MPLAB, PIC, PICmicro, PICMASTER,
PICSTART, PRO MATE, SEEVAL and The Embedded Control
Solutions Company are registered trademarks of Microchip Tech-
nology Incorporated in the U.S.A. and other countries.

dsPIC, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, microPort,
Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM,
MXDEV, PICC, PICDEM, PICDEM.net, rfPIC, Select Mode
and Total Endurance are trademarks of Microchip Technology
Incorporated in the U.S.A.

Serialized Quick Turn Programming (SQTP) is a service mark
of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2002, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999. The
Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs and microperipheral
products. In addition, Microchip’s quality
system for the design and manufacture of
development systems is ISO 9001 certified.

Note the following details of the code protection feature on PICmicro® MCUs.

• The PICmicro family meets the specifications contained in the Microchip Data Sheet.
• Microchip believes that its family of PICmicro microcontrollers is one of the most secure products of its kind on the market today,

when used in the intended manner and under normal conditions.
• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowl-

edge, require using the PICmicro microcontroller in a manner outside the operating specifications contained in the data sheet.
The person doing so may be engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.
• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable”.
• Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of

our product.

If you have any further questions about this matter, please contact the local sales office nearest to you.

 2002 Microchip Technology Inc.

M
AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com
Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-7456

Atlanta
500 Sugar Mill Road, Suite 200B
Atlanta, GA 30350
Tel: 770-640-0034 Fax: 770-640-0307
Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821
Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075
Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924
Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260
Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387
Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338
New York
150 Motor Parkway, Suite 202
Hauppauge, NY 11788
Tel: 631-273-5305 Fax: 631-273-5335
San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955
Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC
Australia
Microchip Technology Australia Pty Ltd
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755
China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104
China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-6766200 Fax: 86-28-6766599
China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521
China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060
China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1315, 13/F, Shenzhen Kerry Centre,
Renminnan Lu
Shenzhen 518001, China
Tel: 86-755-2350361 Fax: 86-755-2366086
Hong Kong
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431
India
Microchip Technology Inc.
India Liaison Office
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122
Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934
Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-334-8870 Fax: 65-334-8850
Taiwan
Microchip Technology Taiwan
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910
France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79
Germany
Microchip Technology GmbH
Gustav-Heinemann Ring 125
D-81739 Munich, Germany
Tel: 49-89-627-144 0 Fax: 49-89-627-144-44
Italy
Microchip Technology SRL
Centro Direzionale Colleoni
Palazzo Taurus 1 V. Le Colleoni 1
20041 Agrate Brianza
Milan, Italy
Tel: 39-039-65791-1 Fax: 39-039-6899883
United Kingdom
Arizona Microchip Technology Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02

WORLDWIDE SALES AND SERVICE

