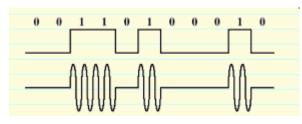
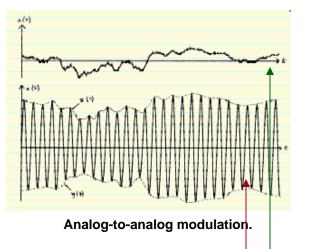

Analog Transmission of Digital Data: ASK, FSK, PSK, QAM

1

Required reading: Garcia 3.7

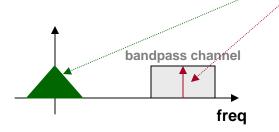

CSE 3213, Fall 2010 Instructor: N. Vlajic

Why Do We Need Digital-to-Analog Conversion?!

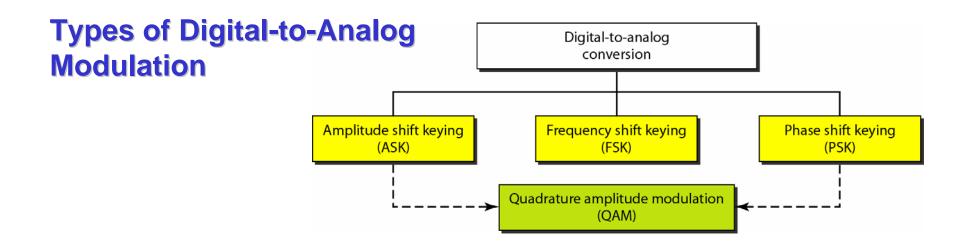


- 1) The medium/channel is band pass, and/or
- 2) Multiple users need to share the medium.

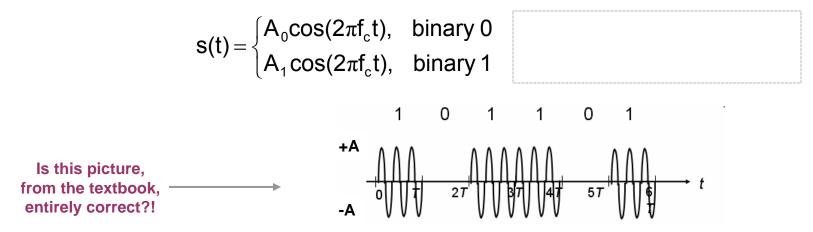
Modulation – process of converting digital data or a low-pass analog to band-pass (higher-frequency) analog signal



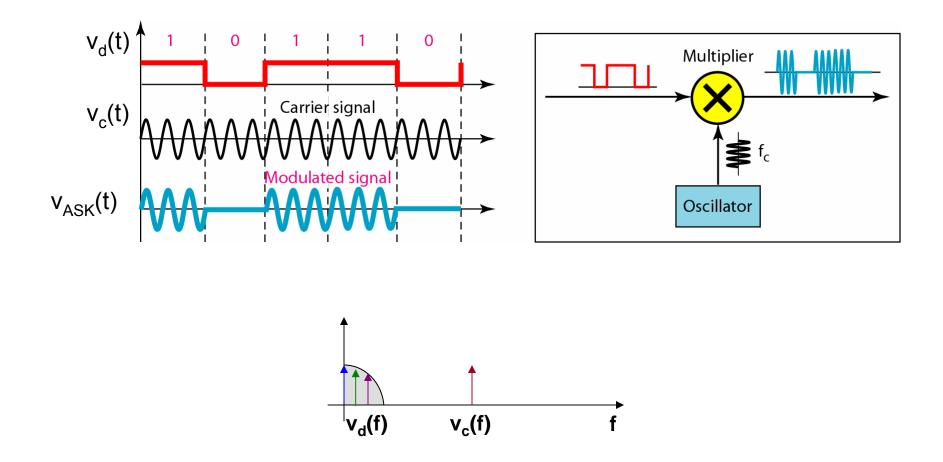
Digital-to-analog modulation.


Carrier Signal – aka carrier freq. or modulated signal - high freq. signal that acts as a basis for the information signal

information signal is called modulating signal


Digital-to-Analog – Modulation

- process of changing one of the characteristic of an analog signal (typically a sinewave) based on the information in a digital signal
 - sinewave is defined by 3 characteristics (<u>amplitude</u>, <u>frequency</u>, and <u>phase</u>) ⇒ digital data (binary 0 & 1) can be represented by varying any of the three
 - application: transmission of digital data over telephone wire (modem)


ASK – strength of carrier signal is varied to represent binary 1 or 0

- both frequency & phase remain constant while amplitude changes
- commonly, one of the amplitudes is zero

- demodulation: only the presence or absence of a sinusoid in a given time interval needs to be determined
- advantage: simplicity
- disadvantage: ASK is very susceptible to noise interference noise usually (only) affects the amplitude, therefore ASK is the modulation technique most affected by noise
- application: ASK is used to transmit digital data over optical fiber

Example [ASK]

How does the frequency spectrum of v_{ASK}(t) look like!?

ASK-Modulated Signal: Frequency Spectrum

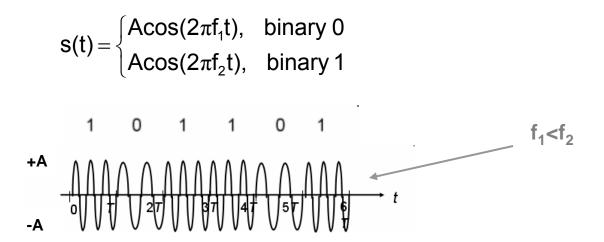
$$\cos A \cdot \cos B = \frac{1}{2} (\cos(A - B) + \cos(A + B))$$

Carrier signal: $v_c(t) = \cos(2\pi f_c t) = \cos(\omega_c t)$, where $2\pi f_c = \omega_c$

Digital signal: (unipolar!!!)

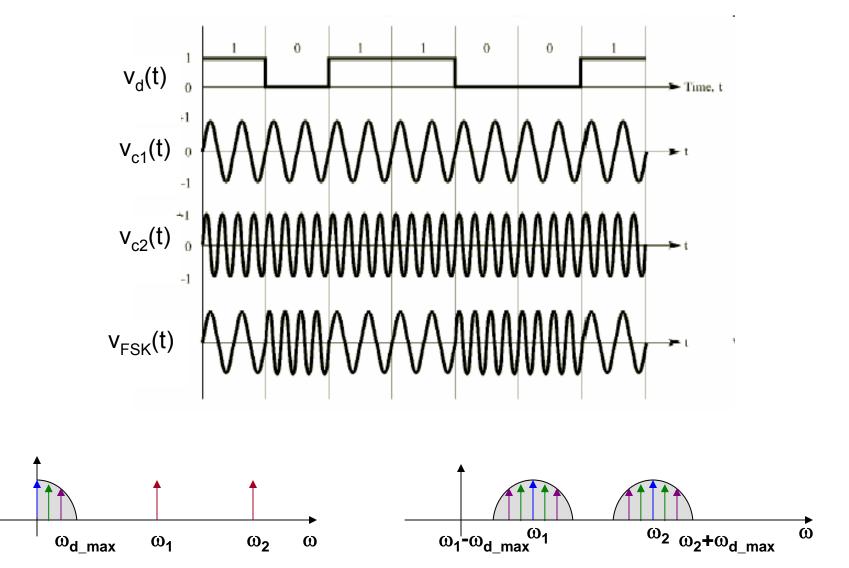
$$v_{d}(t) = A \cdot \left[\frac{1}{2} + \frac{2}{\pi} \cos \omega_{0} t - \frac{2}{3\pi} \cos 3\omega_{0} t + \frac{2}{5\pi} \cos 5\omega_{0} t - \dots \right]$$

Modulated signal:
$$v_{ASK}(t) = v_c(t) \cdot v_d(t) =$$


$$= \cos \omega_c t \cdot \left[\frac{1}{2} + \frac{2}{\pi} \cos \omega_0 t - \frac{2}{3\pi} \cos 3\omega_0 t + \frac{2}{5\pi} \cos 5\omega_0 t - ... \right] =$$

$$= \frac{1}{2} \cos \omega_c t + \frac{2}{\pi} \left[\cos \omega_c t \cdot \cos \omega_0 t - \frac{2}{3\pi} \cos \omega_c t \cdot \cos 3\omega_0 t + ... =$$

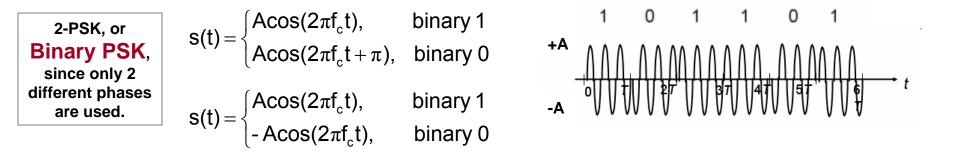
$$= \frac{1}{2} \cos \omega_c t + \frac{1}{\pi} \left[\cos (\omega_c - \omega_0) t + \cos (\omega_c + \omega_0) t \right] -$$


$$- \frac{1}{3\pi} \left[\cos (\omega_c - 3\omega_0) t + \cos (\omega_c + 3\omega_0) t \right] + ...$$

- **FSK** frequency of carrier signal is varied to represent binary 1 or 0
 - peak amplitude & phase remain constant during each bit interval

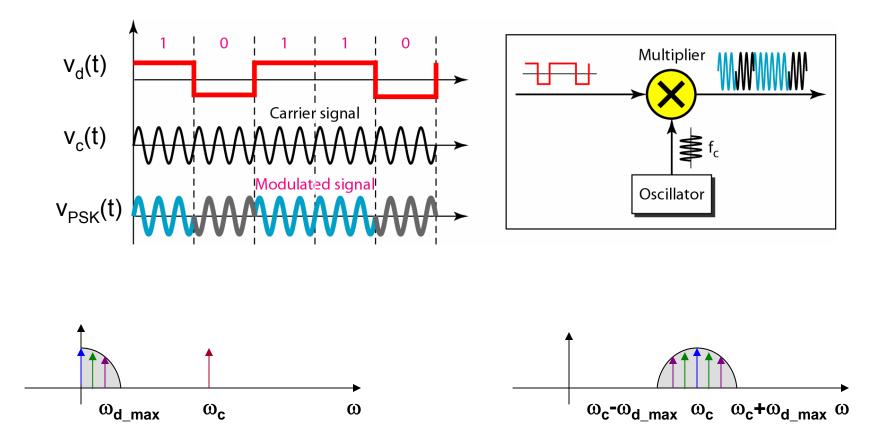
- demodulation: demodulator must be able to determine which of two possible frequencies is present at a given time
- advantage: FSK is less susceptible to errors than ASK receiver looks for specific frequency changes over a number of intervals, so voltage (noise) spikes can be ignored
- disadvantage: FSK spectrum is 2 x ASK spectrum
- application: over voice lines, in high-freq. radio transmission, etc.

FSK-Modulated Signal: Frequency Spectrum


Digital signal:

 $v_{d}(t)$ - modulated with ω_{1} , and $v_{d}'(t) = 1 - v_{d}(t)$ - modulated with ω_{2}

Modulated signal:

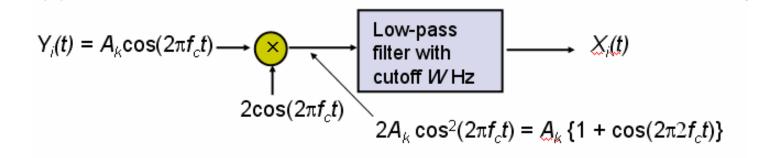

$$\begin{split} v_{\text{FSK}}(t) &= \cos\omega_1 t \cdot v_d(t) + \cos\omega_2 t \cdot (1 - v_d(t)) = \\ &= \cos\omega_1 t \cdot \left[\frac{1}{2} + \frac{2}{\pi} \cos\omega_0 t - \frac{2}{3\pi} \cos3\omega_0 t + \frac{2}{5\pi} \cos5\omega_0 t - ... \right] + \\ &+ \cos\omega_2 t \cdot \left[\frac{1}{2} - \frac{2}{\pi} \cos\omega_0 t + \frac{2}{3\pi} \cos3\omega_0 t - \frac{2}{5\pi} \cos5\omega_0 t - ... \right] = \\ &= ... \\ &= \frac{1}{2} \cos\omega_1 t + \frac{1}{\pi} [\cos(\omega_1 - \omega_0) t + \cos(\omega_1 + \omega_0) t] - \\ &- \frac{1}{3\pi} [\cos(\omega_1 - 3\omega_0) t + \cos(\omega_1 + 3\omega_0) t] + ... + \\ &\frac{1}{2} \cos\omega_2 t - \frac{1}{\pi} [\cos(\omega_2 - \omega_0) t + \cos(\omega_2 + \omega_0) t] - \\ &+ \frac{1}{3\pi} [\cos(\omega_2 - 3\omega_0) t + \cos(\omega_2 + 3\omega_0) t] + ... + \end{split}$$

- **PSK** phase of carrier signal is varied to represent binary 1 or 0
 - peak amplitude & freq. remain constant during each bit interval
 - <u>example</u>: binary 1 = 0° phase, binary 0 = 180° (πrad) phase
 ⇒ PSK is equivalent to multiplying carrier signal by +1 when the information is 1, and by -1 when the information is 0

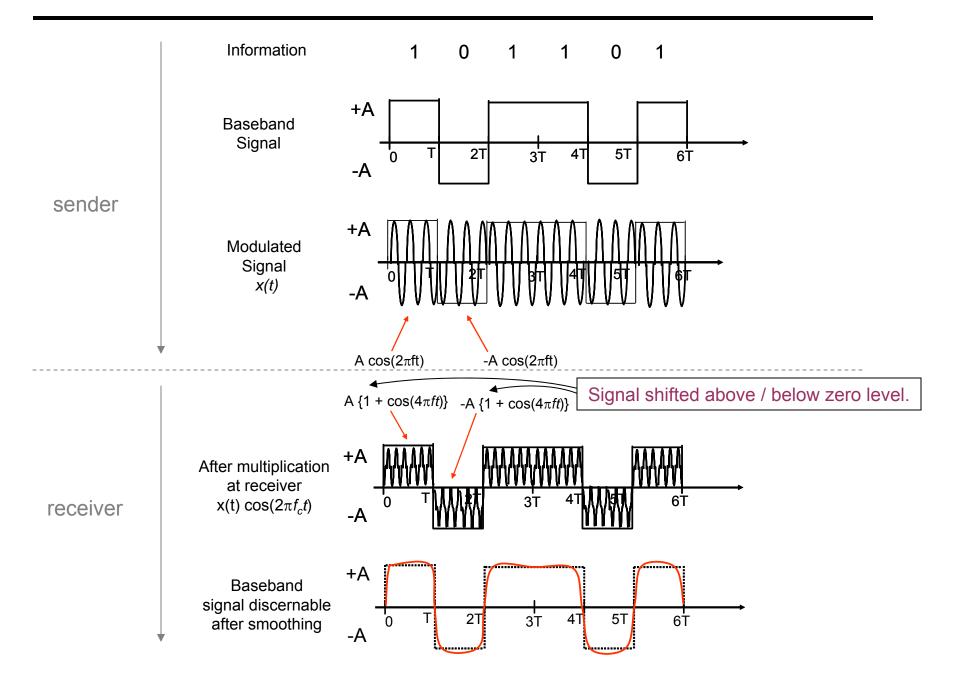
- demodulation: demodulator must determine the phase of received sinusoid with respect to some reference phase
- advantage: PSK is less susceptible to errors than ASK, while it requires/occupies the same bandwidth as ASK
 - more efficient use of bandwidth (higher data-rate) are possible, compared to FSK !!!
- disadvantage: more complex signal detection / recovery process, than in ASK and FSK

Example [PSK]

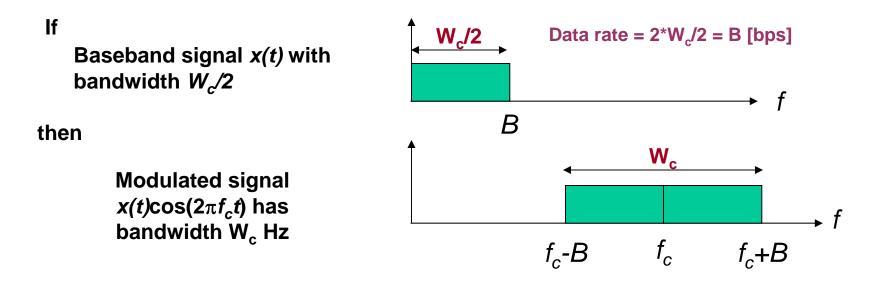
PSK Detection


$$\cos^2 A = \frac{1}{2} (1 + \cos 2A)$$

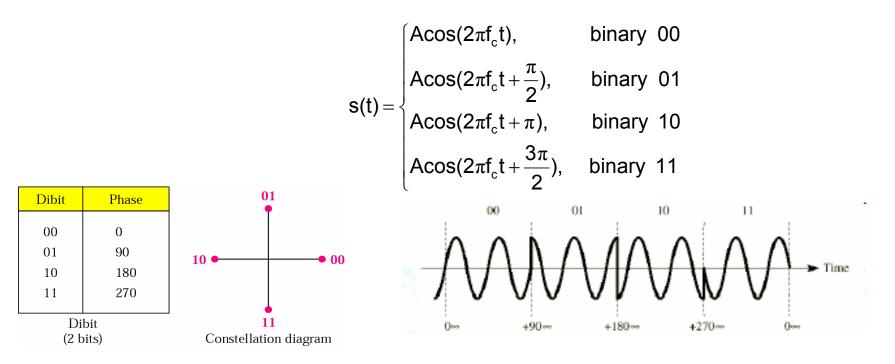
- multiply the received / modulated signal $\pm Acos(2\pi f_c t)$ by $\frac{2*cos(2\pi f_c t)}{2\pi f_c t}$
 - resulting signal


 $2A\cos^2(2\pi f_c t) = A[1 + \cos(4\pi f_c t)], \text{ binary 1}$

 $-2A\cos^{2}(2\pi f_{c}t) = -A[1 + \cos(4\pi f_{c}t)], \text{ binary } 0$

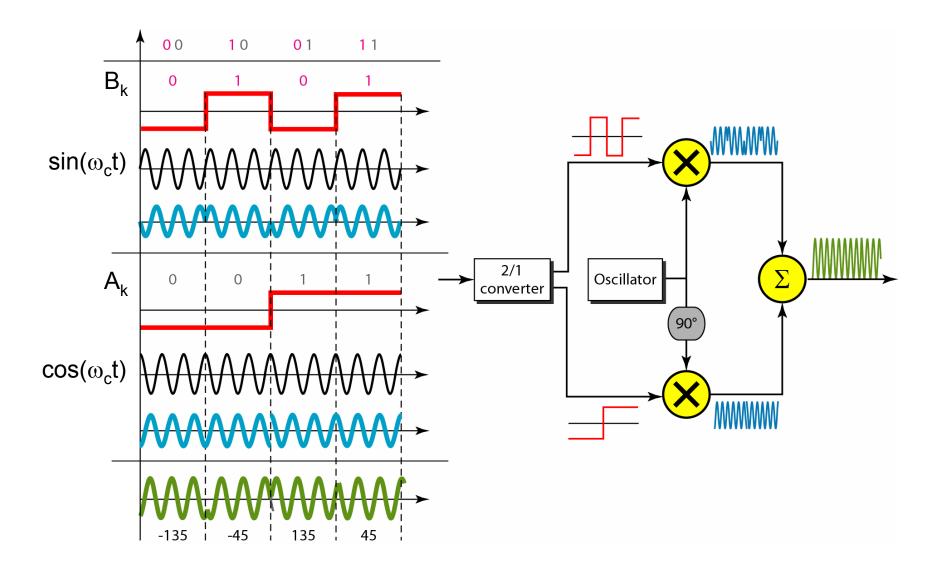

 by removing the oscillatory part with a low-pass filter, the original baseband signal (i.e. the original binary sequence) can be easily determined

Modulation of Digital Data: PSK (cont.)


Facts from Modulation Theory

- If bandpass channel has bandwidth W_c [Hz],
 - then baseband channel has $W_c/2$ [Hz] available, so
 - modulation system supports 2*(W_c/2) = W_c [pulses/second]
 - recall Nyqyist Law: baseband transmission system of bandwidth W_c [Hz] can theoretically support 2 W_c pulses/sec

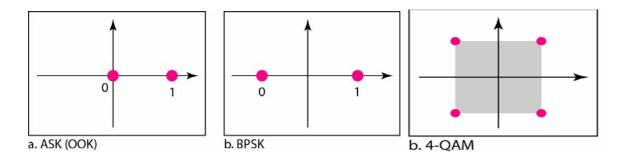
How can we recover the factor 2 in supported data-rate !?


QPSK = 4-PSK – PSK that uses phase shifts of $90^{\circ}=\pi/2$ rad $\Rightarrow 4$ different signals generated, each representing 2 bits

- advantage: higher data rate than in PSK (2 bits per bit interval), while bandwidth occupancy remains the same
- 4-PSK can easily be extended to 8-PSK, i.e. n-PSK
- however, higher rate PSK schemes are limited by the ability of equipment to distinguish small differences in phase

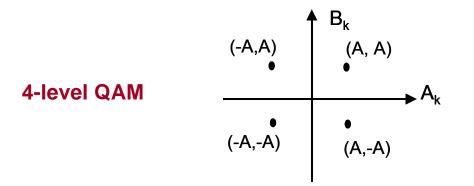
Quadrature –	uses "two-dimensional" signalling					
Amplitude Modulation	 original information stream is <u>split into two sequences</u> that consist of odd and even symbols, e.g. B_k and A_k 					
(QAM)	1	0	1 · 1 ·	0	1	
	1	-1	1 [·]	l -1	1	
	B	1 A ₁	B ₂ A	B ₂ B ₃	A_3	
				_	-	modulated by $\cos(2\pi f_c t)$ comp.) is modulated by
• composite signal $A_k cos(2\pi f_c t) + B_k sin(2\pi f_c t)$ is sent through the channel						
+A -A	$A_k \longrightarrow X \longrightarrow I$ $cos(2\pi f_c t)$	$Y_i(t) =$	$A_k \cos(2$	$\pi f_c t$	+	\rightarrow Y(t) = A _k cos(2 π f _c t) + B _k sin(2 π f _c t)
	$B_k \longrightarrow X \longrightarrow I$ $sin(2\pi f_c t)$	Y _q (t) =	= <i>B_k</i> sin(2	$\pi f_c t$		Transmitted Signal
	 advantage: 	data rate = 2 bits per bit-interval!				

Example [QAM]


- **QAM Demodulation** by multiplying Y(t) by $2 \cdot cos(2\pi f_c t)$ and then low-pass filtering the resultant signal, sequence A_k is obtained
 - by multiplying Y(t) by $2\cdot sin(2\pi f_{\rm c}t)$ and then low-pass filtering the resultant signal, sequence B_k is obtained

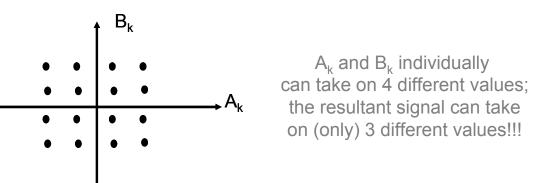
Signal Constellation

Y (Quadrature carrier)


Constellation Diagram – used to represents possible symbols that may be selected by a given modulation scheme as <u>points</u> in 2-D plane

- X-axis is related to in-phase carrier: $cos(\omega_c t)$
 - the projection of the point on the X-axis defines the peak amplitude of the in-phase component
- Y-axis is related to quadrature carrier: $sin(\omega_c t)$
 - the projection of the point on the Y-axis defines the peak amplitude of the quadrature component
- the length of line that connects the point to the origin is the peak amplitude of the signal element (combination of X & Y components)
- the angle the line makes with the X-axis is the phase of the signal element

QAM cont. – QAM can also be seen as a combination of ASK & PSK


$$Y(t) = A_{k}\cos(2\pi f_{c}t) + B_{k}\sin(2\pi f_{c}t) = (A_{k}^{2} + B_{k}^{2})^{\frac{1}{2}}\cos(2\pi f_{c}t + \tan^{-1}\frac{B_{k}}{A_{k}})$$

16-level QAM – the number of bits transmitted per T [sec] interval can be further increased by increasing the number of levels used

- in case of 16-level QAM, A_k and B_k individually can assume 4 different levels: -1, -1/3, 1/3, 1
- data rate: 4 bits/pulse ⇒ 4W bits/second

$$Y(t) = A_{k}\cos(2\pi f_{c}t) + B_{k}\sin(2\pi f_{c}t) = (A_{k}^{2} + B_{k}^{2})^{\frac{1}{2}}\cos(2\pi f_{c}t) + \tan^{-1}\frac{B_{k}}{A_{k}}$$

In QAM various combinations of amplitude and phase are employed to achieve higher digital data rates.

Amplitude changes are susceptible to noise \Rightarrow the number of phase shifts used by a QAM system is always greater than the number of amplitude shifts.