
17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 1/14

UART Protocol

Electronics > Communication Protocols > UART Protocol

Contents

1. Overview
2. Terminology
3. Protocol
4. Transmission Speeds
5. Flow Control

http://blog.mbedded.ninja/electronics
http://blog.mbedded.ninja/electronics/communication-protocols

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 2/14

1. RTS/CTS

6. Error Checking/Noise Immunity
7. Break Signal
8. Higher-Level Protocols
9. Terminal Programs

1. RealTerm (3.5/5)
2. Terminal by Br@y (3.5/5)
3. PuTTy (4/5)

10. 9-Bit Addressing
11. Radiation Hardening
12. RS-232
13. RS-485
14. Cables
15. Powerline Transceivers
16. Creating A Serial Port Bridge

Overview

UART (Universal Asynchronous Receiver/Transmitter) is a digital data transmission
protocol with origins dating back to the 1960’s. It was designed as a communication
protocol to talk between DTE (data terminal equipment) and DCE (data
communication equipment). It is universal in the sense the timing, voltages, flow
control and error checking can be configured.

Drive Type Single-ended

Num. Wires (excl. GND)
2 (TX/RX) or
4 (TX/RX and RTS/CTS)

Duplexity Full

Connection Topology Point-to-point

OSI Layers Layers 1 (physical) and 2 (data link)

It is commonly used today as a simple, two-way node-to-node serial
communications protocol between devices on a circuit board or possibly over a
cable. Because of it’s low voltage and single-ended nature, it is not very noise
resilient, and is usually replaced with a more robust protocol such as RS-232 or RS-

http://blog.mbedded.ninja/electronics/communication-protocols/rs-232-protocol
http://blog.mbedded.ninja/electronics/communication-protocols/rs-485-protocol

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 3/14

485 when communication occurs over any significant cable length or in a noisy
environment.

Terminology

Sorted in alphabetical order.

Term Description

CTS
CTS is an initialism for “Clear To Send“. See the Flow Control
section for more information.

DCD
DCD is an initialism for “Data Carrier Detect“. See the Flow Control
section for more information.

DCE

DTE is an initialism for “Data Communication Equipment“. It was a
term created when UART was first developed to describe electronic
devices which transmitted/received data and connected to terminals
(which were termed DTE’s). See the Flow Control section for more
information.

DTE

DTE is an initialism for “Data Terminal Equipment“. It was a term
created when UART was first developed to describe electronic
devices which displayed data and connected to modems (which were
termed DCE’s). See the Flow Control section for more information.

DTR
DTR is an initialism for “Data Terminal Ready“. See the Flow
Control section for more information.

RI
RI is an initialism for “Ring Indicator“. See the Flow Control section
for more information.

RTS
RTS is an initialism for “Request To Send“. See the Flow Control
section for more information.

RxD
RxD is an acronym for “Receive Data“. See the Flow Control
section for more information.

TxD
TxD is an acronym for “Transmit Data“. See the Flow Control
section for more information.

UART
UART is an initialism for “Universal Asynchronous
Receiver/Transmitter“.

USART USART is an initialism for “Universal Asynchronous/Synchronous

http://blog.mbedded.ninja/electronics/communication-protocols/rs-485-protocol

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 4/14

Receiver/Transmitter“. ATMEL uses this term to describe the
peripherals on its ATmega range of microcontrollers that support the
standard asynchronous protocol as well as a synchronous (clocked)
protocol.

Voting
Voting describes a error-checking process in which the same bit of
UART data is sampled multiple times and then a vote occurs to
determine it’s state.

Protocol

The long history of UART has resulted in many physical and protocol layer variations
such as:

CMOS UART
RS-232
RS-423 (differential)
RS-485 (differential)
DMX512 (commonly used to control stage lighting and effects)
MIDI
LIN Bus
IrDa

Transmission Speeds

UART, by today’s standards, is a slow transmission protocol. However, it is still fast
enough for tons of applications. The commonly supported baud rate speeds are:

600, 1200, 3400, 4800, 9600, 14400, 19200, 28800, 38400, 56000, 57600, 115200,
128000, 256000, 460800, 921600

I have had basically no issues using speeds up to 460800 baud in embedded systems
(either talking to another embedded system, or to a computer through a virtual COM
port). However, 921600 baud has not worked for me in some situations.

Some devices also support custom baud rates.

Flow Control

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 5/14

The flow control is a way of detecting when the receiver or transmitter is ready to
accept or send new data. The UART protocol provides a few (all optional) methods
for flow control:

Hardware RTS/CTS lines
Software XON/XOFF flow control

RTS/CTS

This is done by various additional connections to the standard transmit, receive and
ground wires. The two most common are CTS and RTS. Typically, a micro-controller
may have one or two UART peripherals that support this feature, while the rest are
just basic non-flow control UART’s.

A small amount of power can be extracted from the RTS and CTS lines for powering
low-power devices.

The following tables lists all of the flow control signals (as well as the data signals),
with respect to the device in question. Matching signals are grouped together.

Signal Port
Type

Description DB-
25
Pin

DE-9
Pin

DTR (Data
Terminal
Ready)

Output
DTE drives this to indicate to the DCE that it is
present.

5 4

DCD (Data
Carrier
Detect)

Input
DCE drives this when it is connected to the
telephone line.

8 1

RI (Ring
Indicator)

Input
The DCE drives this when it has detected a
phone call. Note that there is no matching
signal going the other way.

22 9

RTS
(Request
To Send)

Output
DTE drives this to tell the DCE to get ready to
receive data.

4 7

CTS (Clear
To Send)

Input
Driven by the DCE when it is ready to accept
data.

5 8

TxD (Data Output The DTE sends data to the DCE over this line. 2 3

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 6/14

Transmit)

RxD (Data
Receive)

Input The DCE sends data to the DTE over this line. 3 2

Common
Ground
(GND)

n/a The common ground for all signals. 7 5

Protective
Ground
(PG)

n/a
The protective ground. This is usually just
connected up to the common ground on the
PCB.

1 n/a

Note that confusion of how to connect two UART devices together arises when it is
not terminal equipment (DTE) connected to modem equipment (DCE). In the
embedded world, microcontrollers and other devices which support UART can act
either as a DTE or a DCE. Take particular care when connecting UART ports
together on embedded devices!

Rule-of-thumb: Most RS-232 serial interfaces with a male 9 or 25 pin

connector are DTE’s, most with a female 9 or 25 pin connector are

DCE’s.

Most often, manufacturers label the UART pins as DTE’s. In this case, you have to
swap all connections with their matching line. So TxD of device 1 is connected to
RxD of device 2, RxD of device 1 is connected to TxD of device 2, RTS of device 1 is
connected to CTS of device 2, e.tc.

Error Checking/Noise Immunity

The only error checking a UART has by specification is parity checking (additional
error features may exist).

You may notice when sending lots of characters across a UART that some appear to
be corrupted. These can be a real bummer if you are using UART to transmit lots of
data (for say a data logging application). The best ways to improve noise immunity
are:

Slow down the transmission rate to the slowest acceptable speed. Far less errors
occurs at 9600 baud than say, 57600 baud.
Enable parity checking (does not completely fix the problem!)
Enable voting algorithms if the transmitter or receiver support it.

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 7/14

Similarly, enable oversampling if the transmitter or receiver support it (very
similar to voting).
Make the UART transmission lines as short as possible and with as little
capacitance as possible.
Shield the UART cable (not so important)
Implement a checksum algorithm into the receiver and transmitter, such as a
CRC. The UART protocol does not support this natively, you will have to use a 3rd
party library/write the code to do this yourself. Even when using a simple
checksum algorithm such as exclusive or (XOR), this is probably one of the most
fool proof methods for error checking.

Break Signal

The break signal is not a character, but a special signal which can be sent from
transmitter to receiver to indicate an event.

The transmitter sends a break signal by driving it’s TX line low for a period longer
than one frame. There are two types of breaks, short breaks and long breaks. A
short break is when the TX line is driven low for a period of between 1 and 2 frame
lengths, and a long break is when it is driven low for a period of more than 2 frame
lengths.

Higher-Level Protocols

Do you need a higher-level communication protocol that works over a UART
connection? See the SerialFiller library on GitHub (written in C++). SerialFiller uses a
publish/subscribe mechanism and works well on point-to-point serial connections
such as UART.

Terminal Programs

RealTerm (3.5/5)

Website: http://realterm.sourceforge.net/

A easy to use and powerful terminal program for Windows. Stolen from the website,
it’s description is:

https://github.com/mbedded-ninja/SerialFiller
http://realterm.sourceforge.net/

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 8/14

a terminal program specially designed for capturing, controlling and

debugging binary and other difficult data streams. It is far better for

debugging comms than Hyperterminal. It has no support for dialing

modems, BBS etc – that is what hyperterminal does.

It can view and send binary, hex, ASCII, ANSI, integers (both signed and unsigned, 8
or 16-bit), floats and more. Support for half-duplex communication as well as I2C!
Does not lag/hang at all (including when you disable the COM port while it is still
running). You can run multiple RealTerm apps at the same time, to get data from
multiple UART ports simultaneously. It can add timestamps to received UART
messages, which is useful for data logging.

A screenshot of RealTerm in action.

I have noticed a few bugs with RealTerm, especially when it comes to changing the
number of rows and columns, and scrolling back through received data (the
scrollback variable is buggy also).

http://blog.mbedded.ninja/wp-content/uploads/2011/09/realterm-window.jpg

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 9/14

Terminal by Br@y (3.5/5)

Website: https://sites.google.com/site/terminalbpp/

A simple and tidy Windows terminal program. Personally, it doesn’t get the same
amount of respect as RealTerm because of it’s simplicity and slightly buggy nature.
When decoding into hex, the program can hang if your receiving large amounts of
data. It can also hang if you disable the COM port while it is still connected.

A screenshot of “Terminal by Br@y” in action.

PuTTy (4/5)

Website: http://www.chiark.greenend.org.uk/~sgtatham/putty/

PuTTY is a free implementation of Telnet and SSH for Windows and

Unix platforms, along with an xterm terminal emulator.

If your running windows, PuTTY is a very handy application to have if you want to
emulate the command-line style interface of a UNIX-like system. Although the
debugging and capturing features are not as good as say, RealTerm, it offers
character-by-character input and proper response to pressing ‘special’ keys such as
enter (which RealTerm doesn’t allow, instead you have to enter a string and then
press send). This may sound like a very small difference, but this feature does come
in useful! I find it very handy when using FreeRTOS and the CLI (command-line

https://sites.google.com/site/terminalbpp/
http://blog.mbedded.ninja/wp-content/uploads/2011/09/terminal-v1-9b-by-bray-window.jpg
http://www.chiark.greenend.org.uk/~sgtatham/putty/

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 10/14

interface) extension, which allows you to communicate from a pc to a embedded
system using a command-line style interface (as in the picture to the right).

A screenshot of the PuTTy application in action, along with the settings window.

I have discovered one bug in PuTTY…if it receives a large number of characters all at
once (which is common when printing debug messages from an embedded system,
and for some reason, the string is not null-terminated, and starts printing gobble-de-
gooch from random memory locations), PuTTY can freeze, and needs to be restarted.
In this situation, it can also print the message “PuTTyPuTTyPuTTy” many times over
across the COM port you are debugging. Weird.

http://blog.mbedded.ninja/wp-content/uploads/2011/09/putty-terminal-screenshot-with-settings-window.png

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 11/14

PuTTY can freeze when printing a large number of random characters to it across a COM port.

9-Bit Addressing

9-bit addressing was employed when using a multi-drop configuration to prevent
slaves from wasting processor time in decoding every byte on the bus to see if it was
addressed to them. A 9th bit is sent out after every byte, and is used to signal if the
previous 8-bits where an address (which the slaves have to listen to), or just data
(which can be ignored).

Radiation Hardening

Some UART protocols have radiation tolerant devices, such as the DRS4485, an Dual
RS-485 Interface Transceiver made by Aeroflex.

RS-232

RS-232 is a very similar protocol to UART, and a UART to RS-232 converter is one of
the most popular communication protocol converters you will see in an embedded
system.

For more information, see the RS-232 page.

http://blog.mbedded.ninja/wp-content/uploads/2011/09/putty-bug-when-receiving-large-num-of-chars.png
http://www.aeroflex.com/ams/pagesproduct/datasheets/4485.pdf
http://blog.mbedded.ninja/electronics/communication-protocols/rs-232-protocol

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 12/14

mbedded.ninja
The embedded engineering website that's got your back.

RS-485

RS-482 is another very common protocol that UART is converted to and from. It is
usually chosen over RS-232 when longer distances and/or larger noise immunity is
needed. For more information, see the RS-485 page.

Cables

You can get null-terminated USB-to-USB serial port emulator cables. These are
awesome for transferring data between two computers (or any 2-USB host devices)
without reverting to a true USB-to-USB A cable (which requires use of a more
complicated protocol).

FTDI makes one such cable called the USB to USB cable.

If you are interested in routing between two COM ports on the same computer, you
could use one of these, however, it is normally much easier to do it purely in
software with a serial bridge instead.

Powerline Transceivers

The SIG60 is an example of a powerline transceiver.

Creating A Serial Port Bridge

There are occasions when you want or need to send serial data between two
pieces of software on the computer, or between two hardware devices both
connected to the computer. An example would be to unit test a PC-based serial
communications protocol you have written without writing the unit-test code on the
microcontroller. There are software programs that emulate a serial port bridge, but
in my experience I found these are every buggy or cost money.

http://blog.mbedded.ninja/
http://blog.mbedded.ninja/
http://blog.mbedded.ninja/electronics/communication-protocols/rs-485-protocol
http://www.ftdichip.com/Products/Cables/USBtoUSB.htm
http://www.yamar.com/sig60.php

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 13/14

Testing a physical serial-port bridge, made by connecting two FTDI cable together.

You can create a rudimentary serial bridge to connect to pieces of software together
by connecting two USB-to-UART (or USB-to-RS232) converters together, crossing the
RX and TX lines over. Although not a very permanent solution, this is good for
simple tests. The following image shows a hardware-based serial port bridge with a
terminal on each end.

Posted: September 12th, 2011 at 5:52 pm
Last Updated on: August 31st, 2017 at 8:04 am

SHARE THIS:

More

LIKE THIS:

Loading...

http://blog.mbedded.ninja/wp-content/uploads/2011/09/testing-a-physical-serial-port-bridge.jpg
http://blog.mbedded.ninja/electronics/communication-protocols/uart-protocol?share=facebook&nb=1
http://blog.mbedded.ninja/electronics/communication-protocols/uart-protocol?share=google-plus-1&nb=1
http://blog.mbedded.ninja/electronics/communication-protocols/uart-protocol?share=linkedin&nb=1
http://blog.mbedded.ninja/electronics/communication-protocols/uart-protocol?share=tumblr&nb=1
http://blog.mbedded.ninja/electronics/communication-protocols/uart-protocol?share=pinterest&nb=1
http://blog.mbedded.ninja/electronics/communication-protocols/uart-protocol?share=twitter&nb=1

17.12.2017 UART | mbedded.n�nja

http://blog.mbedded.n�nja/electron�cs/commun�cat�on-protocols/uart-protocol 14/14

The Idle Task
2 comments • 3 years ago

gbmhunter — How are you sure
about the real percentages being
70% and 30%? Also, try creating

NinjaCalc v1.3.0 Released
3 comments • a year ago

ado — Done :-)

Designators
2 comments • 3 years ago

gbmhunter — Thanks for the
info, I have encountered the
same issue before, and I have

TO-220AC Component Package
2 comments • 3 years ago

gbmhunter — Thanks for
pointing that out, I have updated
this page.

ALSO ON CLADLAB

0 Comments CladLab Login1

 Share⤤ Sort by Best

LOG IN WITH OR SIGN UP WITH DISQUS

Name

Start the discussion…

?

Be the first to comment.

Subscribe✉ Add Disqus to your siteAdd DisqusAddd Privacy🔒

 Recommend

Proudly powered by WordPress

https://disqus.com/
http://disq.us/?url=http%3A%2F%2Fwww.mbedded.ninja%2Fprogramming%2Foperating-systems%2Ffreertos%2Fthe-idle-task&key=V2SbDsMGbs9ibTzMUWnnuw
http://disq.us/?url=http%3A%2F%2Fwww.mbedded.ninja%2Fprogramming%2Foperating-systems%2Ffreertos%2Fthe-idle-task&key=V2SbDsMGbs9ibTzMUWnnuw
http://disq.us/?url=http%3A%2F%2Fwww.mbedded.ninja%2Fninjacalc%2Fninjacalc-v1-3-0-released&key=MsuoBCRDeS5CBq77Mk4kRQ
http://disq.us/?url=http%3A%2F%2Fwww.mbedded.ninja%2Fninjacalc%2Fninjacalc-v1-3-0-released&key=MsuoBCRDeS5CBq77Mk4kRQ
http://disq.us/?url=http%3A%2F%2Fwww.mbedded.ninja%2Fpcb-design%2Fdesignators&key=dZkXKgBTS-8h-JGuUlM-Vg
http://disq.us/?url=http%3A%2F%2Fwww.mbedded.ninja%2Fpcb-design%2Fdesignators&key=dZkXKgBTS-8h-JGuUlM-Vg
http://disq.us/?url=http%3A%2F%2Fwww.mbedded.ninja%2Fpcb-design%2Fcomponent-packages%2Fto-220ac-component-package&key=ROOP9JPDmSnmOdIDDdP08w
http://disq.us/?url=http%3A%2F%2Fwww.mbedded.ninja%2Fpcb-design%2Fcomponent-packages%2Fto-220ac-component-package&key=ROOP9JPDmSnmOdIDDdP08w
https://disqus.com/home/forums/cladlab/
https://disqus.com/home/inbox/
https://publishers.disqus.com/engage?utm_source=cladlab&utm_medium=Disqus-Footer
https://help.disqus.com/customer/portal/articles/466259-privacy-policy
https://wordpress.org/

