
8-Bit UART Datasheet UART V 5.3
001-13628 Rev. *J8-Bit UART

Copyright © 2001-2015 Cypress Semiconductor Corporation. All Rights Reserved.

For one or more fully configured, functional example projects that use this user module go to
www.cypress.com/psocexampleprojects.

Introduction
Universal Asynchronous Receiver/Transmitter (UART) is a standard serial communication protocol for
exchanging data between two devices. In this communication protocol, data is transferred sequentially,
one bit at a time. This implementation uses a frame consisting of 8 data bits, one start bit, one optional
parity bit, and one or more stop bits. A parity bit is a bit, with a value of 0 or 1, that is added to a block of
data for error detection purposes. This bit is optional; it may or may not be added to the data payload. It
can also be set either to odd or even. These bits are often used in data transmission to ensure that data is
not corrupted during the transfer process. If the data transmission protocol is set to an odd parity, each
data packet must have an odd parity. If it is set to even, each packet must have an even parity. If a packet
is received with the wrong parity, an error will be produced and the data will need to be retransmitted. The
parity bit for each data packet is computed before the data is transmitted.

The UART data frame is shown in Figure 1.
Figure 1. UART Data Frame

Resources

PSoC® Blocks
API Memory

(Bytes)
Pins (per
External

I/O)Digital
Analog

CT
Analog

SC Flash RAM

CY8C29/27/24/22/21xxx, CY8C23x33, CY7C64215, CYWUSB6953, CY8CLED02/04/08/16, CY8CLED0xD,
CY8CLED0xG, CY8CTST110, CY8CTMG110, CY8CTST120, CY8CTMG120, CY8CTMA120, CY8CTMA140,
CY8C21x45, CY8C22x45, CY8CTMA30xx, CY8C28x45, CY8CPLC20, CY8CLED16P01, CY8C28x43,
CY8C28x52, CY7C603XX

CY8C29/27xxx, CY8CLED08/16,
CY8CPLC20, CY8C28x43,
CY8C28x45, CY8C28x52

Low Level API 2 – – 311 0 2

High Level API 2 – – 507 3 + Buffer
size (default
- 16)

2

CY8C24/22/21xxx, CY8C23x33,
CY7C64215, CYWUSB6953,
CY8CLED02/04, CY8CLED0xD,
CY8CLED0xG, CY8CTST110,
CY8CTMG110, CY8CTST120,
CY8CTMG120, CY8CTMA120,
CY8CTMA140, CY8C21x45,
CY8C22x45, CY8CTMA30xx,
CY8CPLC20, CY8CLED16P01

Low Level API 2 – – 339 0 2

High Level API 2 – – 608 3 + Buffer
size (default
- 16)

2

Cypress Semiconductor Corporation • 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600
Document Number: 001-13628 Rev. *J Revised March 3, 2015

http://www.cypress.com/psocexampleprojects

8-Bit UART
Because the UART protocol is asynchronous, it does not need a clock signal. In UART communication,
speed is defined by the baud rate. The baud rate is equal to the number of bits transmitted per second
including the start and stop bits. For reliable data transmission and reception without any loss of bits, both
the transmitter and receiver should have same baud rate. Mismatch in baud rates typically results in
framing error. Common baud rates are 4800, 9600, 19200, 38400, 57600, and 115200 but other rates may
also be used.

Features and Overview
Asynchronous receiver and transmitter
Data-format compliant with RS-232 serial-data format
Burst rates up to 6 Mbits/second
Data framing consists of start, optional parity, and stop bits
Optional interrupt on receive register full and transmit buffer empty
Parity, overrun, and framing error detection
High level transmit and receive functions

The UART User Module is an 8-bit Universal Asynchronous Receiver Transmitter that supports duplex
RS-232-compliant, data format serial communications over two wires. Received and transmitted data
format includes a start bit, optional parity, and a stop bit. Programmable clocking and selectable interrupt
or polling style operation is supported. Application Programming Interface (API) firmware routines are
given to initialize, configure, and operate the UART. An additional high level API is also given to support
background command receiving and string printing.

Figure 2. UART Block Diagram

Functional Description
The UART User Module implements a serial transmitter and receiver. The UART maps onto two PSoC
Digital Communication blocks designated TX and RX, in the Device Editor of PSoC Designer™. The TX
PSoC block gives transmitter functionality and the RX PSoC block gives receiver functionality.

RX and TX operate independently. Each has their own Control and Status register, programmable
interrupts, I/O, Buffer register, and Shift register. They share the same enable, clock, and data format.
Document Number: 001-13628 Rev. *J Page 2 of 34

8-Bit UART
Setting the Enable bit in the RX Control and TX Control registers enables the UART for operation.
Enabling and disabling is performed using the API provided functions.

The UART User Module clock is shared by both the RX and TX components. The clock frequency
selected must be eight times the frequency of the required data bit rate. Each received or transmitted data
bit requires eight input clock cycles. The clock is configured using the PSoC Designer Device Editor.

The data received and transmitted is a bit stream that consists of a start bit, eight data bits, an optional
parity bit, and a stop bit. The parity may be set to none, even, or odd, and is set using the PSoC Designer
Device Editor or using the UART API. Both RX and TX are set to the same parity configuration.

TX - UART Transmitter
The transmitter uses the TX Buffer, TX Shift, and TX Control registers of a Digital Communications type
PSoC block.

The TX Control register is initialized and configured using the UART User Module firmware API routines.
When the Enable bit in the TX Control register is set, an internal divide-by-eight bit clock is generated.

A data byte to transmit is written by an API routine into the TX Buffer register, clearing the Tx Buffer Empty
status bit in the TX Control register. This status bit can be used to detect and prevent transmit overrun
errors.

The rising edge of the next bit clock transfers the data to the Shift register and sets the Tx Buffer Empty bit
in the TX Control register. If the interrupt enable mask is enabled, an interrupt is triggered. This interrupt
enables queuing the next byte to transmit. So when the current data byte is completely transmitted, the
new byte is transmitted on the next available transmit clock.

The start bit is transmitted at the same time that the data byte is transferred from the TX Buffer register to
the TX Shift register. Successive bit clocks shift a serial bit stream to the output. The stream is composed
of each bit of the data byte, least significant bit first, an optional parity bit, and a final stop bit. When the
stop bit is completely transmitted, the TX Control register’s Tx Complete status bit is set. This bit remains
valid until read. If a new data byte has been written to the TX Buffer register, the data byte is transferred to
the TX Shift register and transmission of the data begins on the next rising edge of the bit clock.

RX - UART Receiver
The receiver uses the RX Buffer, RX Shift, and RX Control registers of a Digital Communications type
PSoC block.

The RX Control register is initialized and configured using the UART User Module firmware API routines.
Initialization of the RX consists of setting the UART parity, optionally enabling the interrupt on the Rx
Register Full condition, and then enabling the UART.

When a start bit is detected on the RX input, a divide-by-eight bit clock is started and synchronized to
sample the data in the center of the received bits. On the rising edge of the next eight-bit clock, the input
data is sampled and shifted into the RX Shift register. If parity is enabled, the next bit clock samples the
parity bit. The sampling of the stop bit, on the next clock, results in the received data byte transfer to the
RX Buffer register and the triggering of one or more of the following events:

Rx Register Full bit in the RX Control register is set, and if the interrupt for the RX is enabled, then the
associated interrupt is triggered.
If the stop bit is not detected at the expected bit position in the data stream, then the Framing Error bit
in the RX Control register is set.
If the Buffer register has not been read before the stop bit of the currently received data, then the Over-
run Error bit in the RX Control register is set.
Document Number: 001-13628 Rev. *J Page 3 of 34

8-Bit UART
If a parity error was detected, then the Parity Error bit is set in the RX Control register.

For polling detection of a completely received data byte, the Rx Register Full bit in the RX Control register
must be monitored. Data must be read out of the RX Buffer register before the next byte is completely
received, to prevent the overrun error condition.

Communication System Accuracy
The maximum deviation allowed in the clock source is ±4% for reliable UART communication. The IMO of
the PSoC 1 has a maximum tolerance of 2.5% and hence can be used. But the 6MHz SLIMO clock cannot
be used since it has a tolerance of ±4.2%, which is not acceptable for a reliable UART communication.

Some of the PSoC 1 devices such as CY24x94 and CY21x34 have IMO with a tolerance of >=4%. When
connected to the USB bus, the IMO gets synced to the USB clock and hence will become as accurate as
the USB bus clock. When not connected to USB bus, it runs at ±4% tolerance. In these devices, when you
place a UART User Module, the Design Rule Checker gives a warning. For example, when you place the
UART UM in CY8C24x94, the warning generated is “UART should not be used in the CY8C24x94 devices
without connection to the USB bus”.

The system error, the sum of the error at both ends of the communication link should be less than 4% for
the UART communication to work properly. See the device datasheets for more information about the
accuracy of SysClk.

Timing
The following RX Timing diagram illustrates the operation of the RX component of the UART User Module:
Figure 3. RX Timing Diagram
Document Number: 001-13628 Rev. *J Page 4 of 34

8-Bit UART
The following TX Timing diagram illustrates the operation of the TX component of the UART User Module:
Figure 4. TX Timing Diagram

DC and AC Electrical Characteristics
Table 1. UART DC and AC Electrical Characteristics

Placement
The UART User Module can be placed only in the Digital Communications blocks. It requires two blocks.
Note that the same clock source is used for both receiver and transmitter components.

Parameters and Resources
Clock

UART is clocked by one of 16 possible sources. The Global I/O buses can be used to connect the
clock input to an external pin or a clock function generated by a different PSoC block. When using an
external digital clock for the block, the row input synchronization must be turned off for accuracy and
sleep operation. The 48 MHz clock, the CPU_32 kHz clock, one of the divided clocks, 24V1 or 24V2,
or another PSoC block output can be specified as the clock input.
The clock rate must be set to eight times the desired bit rate. One data bit is received or transmitted
every eight clock cycles. The tolerance of clock must be ± 2% for it to work properly.
Some examples here show how you can set the different baud rate.
If the desired baud rate is 9600, the clock to the UART should be 8 x 9600 = 76.8 KHz. To get a
frequency of 76.8 KHz from 24 MHz, the required divider is 312.5. Unfortunately, we cannot have a
fraction in the divider and have to round off to 312 or 313. Following are some of the options to
generate this divider:
– SysClk = 24 MHz, VC1 divider = 8, VC3 source = VC1, and VC3 divider = 39
– SysClk = 24 MHz, VC1 divider = 2, VC2 divider = 4, VC3 source = VC2, and VC3 divider = 39
– SysClk = 24 MHz, VC1 divider = 2, VC3 source = VC1, and VC3 divider = 156
In all the above cases, the Clock parameter is set to VC3.SysClk = 24 MHz, VC1 divider = 4, VC3
Source = VC1 and VC3 divider = 39. SysClk = 24 MHz, VC1 divider = 2, VC2 divider = 2, VC3 Source

Parameter Conditions and Notes Typical Limit Units

Fmax Maximum character transmission frequency -- 6 Mbits
Document Number: 001-13628 Rev. *J Page 5 of 34

8-Bit UART
= VC2 and VC3 divider = 39.SysClk = 24 MHz, VC3 Source = SysClk/1 and VC3 divider = 156.In all
the above cases the Clock parameter is set to VC3.
– SysClk = 24 MHz, VC1 divider = 2, VC2 divider = 2, VC3 source = VC2, and VC3 divider = 39
– SysClk = 24 MHz, VC1 divider = 2, VC2 divider = 2, VC3 source = VC2, and VC3 divider = 39
– SysClk = 24 MHz, VC3 source = SysClk/1, and VC3 divider = 156
In all the above cases the Clock parameter is set to VC3.

RX Input
The input of the receiver can be connected to a low, high, neighboring PSoC block, the analog
comparator output bus, or one of the global buses. Using a global bus, the input can be connected to
one of the external pins.

Invert RX Input
This parameter enables you to invert the RX input signal. This option may be used for certain RS232
transceivers that produce an inverted output.

TX Output
The output of the transmitter can be routed to the Global Output Bus. The Global Output Bus can then
be connected to an external pin or to another PSoC block for further processing.

TX Interrupt Mode
This option determines when an interrupt is generated for the TX block. The “TxRegEmpty" option
causes an interrupt to be generated as soon as the data is transferred from the Data register to the
Shift register. Choosing the second option, “TxComplete," delays the interrupt until the last bit is
shifted out the Shift register. This second option is useful when it is important to know that the char-
acter has been completely sent. The first option, “TxRegEmpty," is best used to maximize the output
of the transmitter. It allows a byte to be loaded while the previous byte is being sent. In the interrupt
service routine, the TX_CONTROL_REG should be read to enable subsequent interrupts.

ClockSync
In PSoC devices, digital blocks may provide clock sources in addition to the system clocks. Digital
clock sources may even be chained in a ripple fashion. This introduces skew with respect to the
system clocks. These skews are more critical in the CY8C29/27/24/22/21xxx and CY8CLED04/08/16
PSoC device families because of various data-path optimizations, particularly those applied to the
system buses. This parameter may be used to control clock skew and ensure proper operation when
reading and writing PSoC block register values. Appropriate values for this parameter should be
determined from the following table:
Document Number: 001-13628 Rev. *J Page 6 of 34

8-Bit UART
RX Output
This parameter enables you to route the Input signal to one of the row buses. This signal along with
the Data Clock Out can be used to facilitate data verification functions such as Cyclical Redundancy
Checks using the CRC16 User Module.

RX Clock Out
This parameter enables you to route the bit clock from the RX block to one of the row buses. The bit
clock is the Clock input divided by eight. The rising edge of the Data Clock Out signal corresponds to
the time when the data is stable and should be sampled. The signal along with the RX Output can be
used to facilitate data verification functions such as Cyclical Redundancy Checks using the CRC16
User Module.

TX Clock Out
This parameter enables you to route the bit clock from the TX block to one of the row buses. The bit
clock is the Clock input divided by eight. The rising edge of the Data Clock Out signal corresponds to
the time when the data is stable and should be sampled. The signal along with the TX Output can be
used to facilitate data verification functions such as Cyclical Redundancy Checks.

RxCmdBuffer
This parameter enables the receive command buffer and firmware used for command processing.
The UART RX interrupt must be enabled for the command buffer to operate. The command buffer
works in the UART RX interrupt service routine to collect the characters in a buffer until the command
terminator character is received. Once the terminator character is received, a flag is set to signal that
the command buffer is ready to be read.

RxBufferSize
This parameter determines the number of RAM locations that are reserved for the receive buffer. The
largest command that can be received is one less than the buffer size selected, because the string
must be null terminated. This parameter is only valid when the RxCmdBuffer is enabled and the UART
RX interrupt is enabled.

ClockSync Value Use

Sync to SysClk Use this setting for any 24 MHz (SysClk) derived clock source that is divided by two or more.
Examples include VC1, VC2, VC3 (when VC3 is driven by SysClk), 32 kHz, and digital PSoC
blocks with SysClk-based sources. Externally generated clock sources should also use this
value to ensure that proper synchronization occurs.

Sync to SysClk*2 Use this setting for any 48 MHz (SysClk*2) based clock unless the resulting frequency is 48
MHz (in other words, when the product of all divisors is 1).

Use SysClk Direct Use this setting when a 24 MHz (SysClk/1) clock is required. This does not actually perform
synchronization but provides low-skew access to the system clock itself. If selected, this
option overrides the setting of the Clock parameter. It should always be used instead of VC1,
VC2, VC3, or Digital Blocks where the net result of all dividers in combination produces a 24
MHz output.

Unsynchronized Use this setting when the 48 MHz (SysClk*2) input is selected.
Use when unsynchronized inputs are required. In general, this use is advisable only when
interrupt generation is the only application of the Counter.
Document Number: 001-13628 Rev. *J Page 7 of 34

8-Bit UART
CommandTerminator
This parameter selects the character that signals the end of a command. When received, a flag is set
signaling that a complete command has been received. After this flag is set, additional characters are
not accepted until the cmdReset() function is called.

Param_Delimiter
This parameter selects the character used to delimit the command and parameters in the command
receiver buffer. For example, if the Param_Delimiter is set to a space character (32), each substring
separated by a space is a parameter. Given the string ‘cmd foo bar c‘, the parameters are ‘cmd‘, ‘foo‘,
‘bar‘, and ‘c‘. Each call of szGetParam() returns a pointer to the next substring in the order from left
to right as a null terminated string.

IgnoreCharsBelow
This parameter enables the receive buffer to ignore characters below a set value. The characters are
received, but are not added to the receive buffer. This parameter is only valid when the RxCmdBuffer
is enabled and the UART RX interrupt is active.

Enable_BackSpace
This parameter enables you to use a backspace or delete character to delete the last character in the
UART receive buffer. The three possible settings are “Disable", “Backspace", and “Delete". This
parameter is only valid when the RxCmdBuffer is enabled and the UART RX interrupt is active.

Interrupt Generation Control
The following parameters, InterruptAPI and IntDispatchMode, are only accessible by setting the Enable
interrupt generation control check box in PSoC Designer. This is available under Project > Settings >
Chip Editor.

InterruptAPI
The InterruptAPI parameter allows conditional generation of a user module’s interrupt handler and
interrupt vector table entry. Select “Enable" to generate the interrupt handler and interrupt vector table
entry. Select “Disable" to bypass the generation of the interrupt handler and interrupt vector table
entry. If the Receive Command Buffer is used, then the InterruptAPI parameter must be set to
“Enable". It is recommended that you carefully consider before choosing Interrupt API generation,
particularly with projects that have multiple overlays where a single block resource is used by the
different overlays. By selecting Interrupt API generation only when it is necessary, the need to
generate an interrupt dispatch code can be eliminated, thereby reducing overhead.

IntDispatchMode
The IntDispatchMode parameter is used to specify how an interrupt request is handled for interrupts
shared by multiple user modules existing in the same block but in different overlays. When “ActiveS-
tatus" is selected, the firmware tests which overlay is active before servicing the shared interrupt
request. This test occurs every time the shared interrupt is requested. This adds latency and also
produces a nondeterministic procedure of servicing shared interrupt requests, but does not require
any RAM. If “OffsetPreCalc" is selected, the firmware calculates the source of a shared interrupt
request only when an overlay is initially loaded. This calculation decreases the interrupt latency and
produces a deterministic procedure for servicing shared interrupt requests, but at the expense of a
byte of RAM.
Document Number: 001-13628 Rev. *J Page 8 of 34

8-Bit UART
Application Programming Interface
The Application Programming Interface (API) routines are given as part of the user module to enable you
to deal with the module at a higher level. This section specifies the interface to each function together with
related constants provided by the “include" files.
Note

In this, as in all user module APIs, the values of the A and X register may be altered by calling an API
function. It is the responsibility of the calling function to preserve the values of A and X before the call if
those values are required after the call. This “registers are volatile" policy was selected for efficiency
reasons and has been in force since version 1.0 of PSoC Designer. The C compiler automatically takes
care of this requirement. Assembly language programmers must ensure their code observes the policy,
too. Though some user module API function may leave A and X unchanged, there is no guarantee they
may do so in the future.

For Large Memory Model devices, it is also the caller's responsibility to preserve any value in the
CUR_PP, IDX_PP, MVR_PP, and MVW_PP registers. Even though some of these registers may not be
modified now, there is no guarantee that will remain the case in future releases.

The following table lists the low level UART supplied API functions:
Table 2. Low Level UART API

UART_Start

Description:
Sets the parity and enables the UART receiver and transmitter. When enabled, data can be received
and transmitted.

 C Prototype:
void UART_Start(BYTE bParitySetting)

Assembly:
mov A, UART_PARITY_NONE
lcall UART_Start

Function Description

void UART_Start(BYTE bParity) Enable user module and set parity.

void UART_Stop(void) Disable user module.

void UART_EnableInt(void) Enable both RX and TX interrupts.

void UART_DisableInt(void) Disable both RX and TX interrupts.

void UART_SetTxIntMode(BYTE bTxIntMode) Set the source of the Tx interrupt.

void UART_SendData(BYTE bTxData) Send byte without checking TX status.

BYTE UART_bReadTxStatus(void) Return status of TX Status register.

BYTE UART_bReadRxData(void) Return data in RX Data register without checking status of
character is valid.

BYTE UART_bReadRxStatus(void) Check status of RX Status register.
Document Number: 001-13628 Rev. *J Page 9 of 34

8-Bit UART
Parameters:
bParitySetting: One byte that specifies the transmit parity. Symbolic names are given in C and
assembly, and their associated values are listed in the following table:

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_Stop

Description:
Disables the UART module.

 C Prototype:
void UART_Stop(void)

Assembly:
lcall UART_Stop

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_EnableInt

Description:
Selects and enables both UART interrupt(s), by setting the appropriate interrupt enable bits.

C Prototype:
void UART_EnableInt(void)

TX Parity Value

UART_PARITY_NONE 0x00

UART_PARITY_EVEN 0x02

UART_PARITY_ODD 0x06
Document Number: 001-13628 Rev. *J Page 10 of 34

8-Bit UART
Assembly:
lcall UART_EnableInt

Parameters:
None

Return Value:
None

Side Effects:
If an interrupt is pending and this API is called, the interrupt is triggered immediately. This call must
be made before calling Start(). The A and X registers may be modified by this or future implementa-
tions of this function. The same is true for all RAM page pointer registers in the Large Memory Model
(CY8C29xxx and CY8CLED16). When necessary, it is the calling function's responsibility to preserve
the values across calls to fastcall16 functions.

UART_DisableInt

Description:
Disables all UART interrupts.

C Prototype:
void UART_DisableInt(void)

Assembly:
lcall UART_DisableInt

Parameters:
None

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_SetTxIntMode

Description:
Sets the source of the Tx interrupt.

C Prototype:
void UART_SetTxIntMode(BYTE bTxIntMode)

Assembly:
lcall UART_SetTxIntMode
Document Number: 001-13628 Rev. *J Page 11 of 34

8-Bit UART
Parameters:
bTxIntMode: One byte that specifies the interrupt mode of the Tx block. Symbolic names are given in
C and assembly, and their associated values are listed in the following table:

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_SendData

Description:
Initiates data transmission by loading the TX Buffer register with specified data to transmit. The TX
Complete status bit in the TX Control register must be monitored to ensure transmission was initiated.

C Prototype:
void UART_SendData(BYTE bTxData)

Assembly:
mov A, bTxData
lcall UART_SendData

Parameters:
bTxData: Data to be loaded into the TX Buffer register and passed in the Accumulator.

Return Value:
None

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_bReadTxStatus

Description:
Returns the contents of the TX Control register.

C Prototype:
BYTE UART_bReadTxStatus(void)

TX Interrupt Mode Value

UART_INT_MODE_TX_REG_EMPTY 0x00

UART_INT_MODE_TX_COMPLETE 0x01
Document Number: 001-13628 Rev. *J Page 12 of 34

8-Bit UART
Assembly:
lcall UART_bReadTxStatus
and A, UART_TX_COMPLETE
jnz TxIsComplete

Parameters:
None

Return Value:
Returns TX status byte. Use defined masks to test for specific status conditions. Note that masks can
be OR’ed together to check for multiple conditions.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_bReadRxData

Description:
Reads received data byte from the RX Buffer register.

C Prototype:
BYTE UART_bReadRxData(void)

Assembly:
lcall UART_bReadRxData
mov [bRxData],A

Parameters:
None

Return Value:
Data byte received and passed in the Accumulator.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

RX Status Masks Value

UART_TX_COMPLETE 0x20

UART_TX_BUFFER_EMPTY 0x10
Document Number: 001-13628 Rev. *J Page 13 of 34

8-Bit UART
UART_bReadRxStatus

Description:
Reads and returns the RX Control register.

C Prototype:
BYTE UART_bReadRxStatus(void)

Assembly:
lcall UART_bReadRxStatus
push A
and A, UART_RX_COMPLETE
pop A
jz RxNotCompleted
cmp A, UART_RX_ERROR ; determine if RX was without error
jz RxCompleteWithoutError ; receive was completed

Parameters:
None

Return Value:
Returns RX status byte. Use the following defined masks to test for specific status conditions. Note
that masks can be OR’ed together to check for combined conditions.

Side Effects:
A read of this register clears all of the status bits except for UART_RX_REG_FULL, which is only
cleared when the data register is read directly or with the API functions. Ensure that all applicable
status conditions are checked before discarding the return value. The A and X registers may be modi-
fied by this or future implementations of this function. The same is true for all RAM page pointer regis-
ters in the Large Memory Model (CY8C29xxx and CY8CLED16). When necessary, it is the calling
function's responsibility to preserve the values across calls to fastcall16 functions.

RX Status Masks Value Description (when bit is set)

UART_RX_REG_FULL 0x08 Data register contains unread data

UART_RX_PARITY_ERROR 0x80 Parity error since last time status read

UART_RX_OVERRUN_ERROR 0x40 Data has been over written to buffer register

UART_RX_FRAMING_ERROR 0x20 Stop bit is low

UART_RX_ERROR 0xE0 All Error bits OR’ed together
Document Number: 001-13628 Rev. *J Page 14 of 34

8-Bit UART
High Level API
High level APIs add additional firmware on top of the basic functions, to give command and string level
functionality. The Device Editor allows you to set the size of the receive command buffer, command
terminator, parameter delimiter, and below what value the receiver should ignore characters. Not all of the
high level API functions require enabling this buffer. Transmit functions accept pointers to strings, so that
an entire string may be printed with a single function call instead of additional lines of C or ASM code. The
transmit functions do not require the UART transmit interrupt to be enabled.

To use the high level receiver functions that require the receive buffer, go to the Device Editor window,
select the UART and select the "Enable" option for the "RxCmdBuffer" parameter. Next, select a
"RxBufferSize" that is large enough to hold your largest command plus one. Select a command terminator
character "CommandTerminator." This is most often set to be either a carriage return (13), or a line feed
(10). If your commands contain two or more parameters, select a parameter delimiter "Param_Delimiter."
Common command delimiters are usually a space (32) or a comma (44) character. Control characters
below a selected value may also be ignored. Most control characters are in the range between 0 and 31.
Set "IgnoreCharsBelow" to 32 to ignore these characters. Set this parameter to '1' if all characters are
valid. The character selected for the command terminator (CommandTerminator) is not affected by the
"IgnoreCharsBelow" option. The following flow chart shows the proper sequence for basic operation of the
command buffer functions.

The command buffer works in the UART RX interrupt service routine to collect the characters in a buffer
until the command terminator character is received. At that time, a flag is set to signal that the command
buffer is ready to be read. The receive buffer may be accessed directly by reading the array
INSTANCE_NAME_aRxBuffer or by using either szGetParam() or szGetRestOfParams() functions. If
more characters are received than the buffer_size -1, the subsequent characters are ignored.

The command buffer collects characters until the buffer is full or a command terminator is detected. Any
characters received after either of these two conditions is ignored, until the CmdReset command is
executed. After the CmdReset command is executed, the RX ISR firmware begins to collect characters
once again.
Document Number: 001-13628 Rev. *J Page 15 of 34

8-Bit UART
Figure 5. Command Buffer Flow

Table 3. High Level UART API

Function Description

void UART_IntCntl(BYTE bMask) Selectively enable/disable RX and TX interrupts.

void UART_PutString(char * szStr) Send NULL terminated string out TX port.

void UART_CPutString(const char * azStr) Send NULL terminated constant (ROM) string out TX port.

void UART_PutChar(char bData) Send character to TX port when TX register is empty. Function
does not return until TX Data register can be written to without a
data overrun error.

char UART_cGetChar(void) Return character from RX Data register when valid data is
available. Function does not return until character is received.

void UART_Write(char * aStr, BYTE bCnt) Send bCnt bytes from aStr array to TX port.
Document Number: 001-13628 Rev. *J Page 16 of 34

8-Bit UART
Note

1. This function requires you to enable the RxCmdBuffer parameter and set up the Rx receive buffer in
the Device Editor.

UART_IntCntl

Description:
Enables or disables the RX and TX interrupts independently.

C Prototype:
void UART_IntCntl(BYTE bMask)

Assembly:
mov A,(UART_ENABLE_RX_INT|UART_ENABLE_TX_INT)
lcall UART_IntCntl

Parameters:
BYTE bMask: Mask to enable or disable TX and RX blocks.

void UART_CWrite(const char * aStr, int iCnt) Send iCnt bytes from constant aStr array to TX port.

char UART_cReadChar(void) Read RX Data register immediately. If valid data is not available,
return 0, else ASCII char between 1 and 255 is returned.

int UART_ iReadChar(void) Read Rx Data register immediately. If data is not available or an
error condition exists, return an error status in the MSB. The
received char is returned in the LSB.

void UART_PutSHexByte(BYTE bValue) Send a two character hex representation of bValue to the TX
port.

void UART_PutSHexInt(int iValue) Send a four character hex representation of iValue to the TX port.

void UART_PutCRLF(void) Send a carriage return (0x0D) and a line feed (0x0A) to the TX
port.

void UART_CmdReset(void) Reset Rx command buffer. 1

BYTE UART_bCmdCheck(void) Returns a non-zero value if a valid command terminator has
been received.1

BYTE UART_bCmdLength(void) Returns the current command length.1

char * UART_szGetParam(void) Return pointer to next parameter in RX buffer.1

char * UART_szGetRestOfParams(void) Return pointer to remaining parameter string. 1

BYTE UART_bErrCheck(void) Return command buffer error status.1

Function Description
Document Number: 001-13628 Rev. *J Page 17 of 34

8-Bit UART
Return Value:
None

Side Effects:
If there is a pending interrupt on the TX or RX when interrupts are enabled, the interrupt occurs imme-
diately. The A and X registers may be modified by this or future implementations of this function. The
same is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and
CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across
calls to fastcall16 functions.

UART_PutString

Description:
Sends a null terminated (RAM) string to the UART TX.

C Prototype:
void UART_PutString(char * szRamString)

 Assembler:
mov A,>szRamString ; Load MSB part of pointer to RAM based null

; terminated string.
mov X,<szRamString ; Load LSB part of pointer to RAM based null

; terminated string.
lcall UART_PutString ; Call function to send string out UART TX port

Parameters:
char * aRamString: Pointer to the string to be sent to the UART TX. MSB is passed in the Accumulator
and LSB is passed in X register.

Return Value:
None

Side Effects:
Program flow stays in this function until the last character is loaded into the UART transmit buffer. The
A and X registers may be modified by this or future implementations of this function. The same is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16). When
necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16
functions. Currently, only the IDX_PP page pointer register is modified.

Mask Description

UART_ENABLE_RX_INT Enable Receiver

UART_ENABLE_TX_INT Enable Transmitter

UART_DISABLE_RX_INT Disable Receiver

UART_DISABLE_TX_INT Disable Transmitter
Document Number: 001-13628 Rev. *J Page 18 of 34

8-Bit UART
UART_CPutString

Description:
Sends constant (ROM), null terminated string out the UART TX port.

C Prototype:
void UART_CPutString(const char * szROMString)

Assembler:
mov A,>szRomString ; Load MSB part of pointer to ROM based null

; terminated string.
mov X,<szRomString ; Load LSB part of pointer to ROM based null

; terminated string.
lcall UART_CPutString ; Call function to send constant string out

; UART TX

Parameters:
const char * szROMString: Pointer to string to be sent to the UART. MSB of string pointer is passed
in the Accumulator and LSB of the pointer is passed in the X register.

Return Value:
None

Side Effects:
Program flow stays in this function, until the last character is loaded into the UART transmit buffer.
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_PutChar

Description:
Writes a single character to the UART TX port when the port buffer is empty.

C Prototype:
void UART_PutChar(CHAR cData)

Assembler:
mov A,0x33 ; Load ASCII character “3" in A
lcall UART_PutChar ; Call function to send single character to

; UART TX port.

Parameters:
CHAR cData: The character to be sent to the UART TX port. Data is passed in the Accumulator.

Return Value:
None

Side Effects:
Program flow stays in this function until the data can be written to the UART TX buffer. The A and X
registers may be modified by this or future implementations of this function. The same is true for all
RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16). When
Document Number: 001-13628 Rev. *J Page 19 of 34

8-Bit UART
necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16
functions.

UART_cGetChar

Description:
Waits for a valid character in UART RX and returns its value.

C Prototype:
CHAR UART_cGetChar(void)

Assembler:
lcall UART_cGetChar ; Call function to print single character to

; serial port.
mov [CharBuffer,]A ; Store retrieved character in buffer

Parameters:
None

Return Value:
Char bData: The character read from UART RX is returned in the accumulator.

Side Effects:
Program flow stays in this function until a character is received or a character was previously received
but not read. The UART RX interrupt should be disabled when this function is used. The A and X regis-
ters may be modified by this or future implementations of this function. The same is true for all RAM
page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16). When necessary,
it is the calling function's responsibility to preserve the values across calls to fastcall16 functions.

UART_Write

Description:
Sends ‘n‘ characters (RAM) to UART TX port.

C Prototype:
void UART_Write(char * szRamString, BYTE bCount)

 Assembler:
mov A,20 ; Load string/array count
push A
mov A,>szRamString ; Load MSB part of pointer to RAM string
push A
mov A,<szRamString ; Load LSB part of pointer to RAM string
push A
mov X,SP ; Set X register to point to variables
dec X
lcall UART_Write ; Make call to function
add SP,253 ; Reset stack pointer to original position

Parameters:
CHAR * szRamString: Pointer to the string to be sent to the UART TX.
BYTE bCount: Number of characters to be sent to the UART TX.
Document Number: 001-13628 Rev. *J Page 20 of 34

8-Bit UART
Return Value:
None

Side Effects:
Program flow stays in this function until the last character is loaded into the UART TX buffer. The A
and X registers may be modified by this or future implementations of this function. The same is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16). When
necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16
functions. Currently, only the IDX_PP page pointer register is modified.

UART_CWrite

Description:
Sends n characters (ROM) to the UART TX port.

C Prototype:
void UART_CWrite(const char * szRomString, INT iCount)

 Assembler:
mov A,0 ; Load MSB of string/array count
push A
mov A,20 ; Load LSB of string/array count
push A
mov A,>szRomString ; Load MSB part of pointer to ROM string
push A
mov A,<szRomString ; Load LSB part of pointer to ROM string
push A
mov X,SP ; Set X register to point to variables
dec X
lcall UART_CWrite ; Make call to function
add SP,252 ; Reset stack pointer to original position

Parameters:
const char * szRomString: Pointer to the string to be sent to the UART TX port.
int iCount: Number of characters to be sent to the UART TX port.

Return Value:
None

Side Effects:
Program flow stays in this function until the last character is loaded into the UART TX buffer. The A
and X registers may be modified by this or future implementations of this function. The same is true
for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16). When
necessary, it is the calling function's responsibility to preserve the values across calls to fastcall16
functions.

UART_cReadChar

Description:
Reads UART RX port immediately if data is not available or an error condition exists, or zero is
returned. Otherwise, the character is read and returned.
Document Number: 001-13628 Rev. *J Page 21 of 34

8-Bit UART
C Prototype:
CHAR UART_cReadChar(void)

Assembler:
lcall UART_cReadChar ; Call function to read a character
cmp A,0x00 ; Check for error
jz ProcessError ; If error, Process the error condition
mov [CharBuffer],A ; Store retrieved character in buffer

Parameters:
None

Return Value:
CHAR bData: Character read from UART RX port. ASCII characters from 1 to 255 are valid. A
returned zero signifies an error condition or no data available.

Side Effects:
Function only accepts characters from 1 to 255 as valid. A 0x00 (null) character is detected as an error
condition. The A and X registers may be modified by this or future implementations of this function.
The same is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and
CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across
calls to fastcall16 functions.

UART_iReadChar

Description:
Reads UART RX port immediately. Returns received character and error condition.

C Prototype:
INT UART_iReadChar(void)

Assembler:
lcall UART_iReadChar ; Call function to read a character
cmp X,0x00 ; Check for error
jnz ProcessError ; If error, Process the error condition
mov [CharBuffer]A ; Store retrieved character in buffer

Parameters:
None

Return Value:
unsigned int iData: MSB contains status and LSB contains UART RX data. If the MSB is non-zero, an
error has occurred. This table lists the possible returned error codes in the MSB:

Error Flags Value Description

UART_RX_PARITY_ERROR 0x80 Parity Error

UART_RX_OVERRUN_ERROR 0x40 Buffer Overrun Error

UART_RX_FRAMING_ERROR 0x20 Character Framing Error

UART_RX_NO_DATA 0x10 RX Buffer Full
Document Number: 001-13628 Rev. *J Page 22 of 34

8-Bit UART
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_PutSHexByte

Description:
Sends two byte ASCII Hex representation of data to the UART TX port.

C Prototype:
void UART_PutSHexByte(BYTE bData)

 Assembler:
mov A,0x33 ; Load data to be sent to UART TX
lcall UART_PutSHexByte ; Call function to output hex

; representation of data. The output
; for this value would be “33".

Parameters:
BYTE bData: Byte to be converted to ASCII string.

Return Value:
None

Side Effects:
Program flow stays in this function, until the last character is loaded into the UART transmit buffer.
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_PutSHexInt

Description:
Sends four byte ASCII Hex representation of data to the UART TX port.

C Prototype:
void UART_PutSHexInt(INT iData)

 Assembler:
mov A,0x34 ; Load LSB in A
mov X,0x12 ; Load MSB in X

lcall UART_PutSHexInt ; Call function to output hex
; representation of data. The output
; for this value would be “1234".

Parameters:
int iData: Integer to be converted to ASCII string.
Document Number: 001-13628 Rev. *J Page 23 of 34

8-Bit UART
Return Value:
None

Side Effects:
Program flow stays in this function, until the last character is loaded into the UART transmit buffer.
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_PutCRLF

Description:
Function to send out carriage return (0x0D) and line feed (0x0A) out of the UART TX port.

C Prototype:
void UART_PutCRLF(void)

Assembler:
lcall UART_PutCRLF ; Send a carriage return and line feed out TX

Parameters:
None

Return Value:
None

Side Effects:
Program execution stays in this function, until all characters have been written to the UART TX buffer.
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions.

UART_CmdReset

Description:
Resets command buffer and flags. This allows the characters for the next command to be accepted.

C Prototype:
void UART_CmdReset(void)

Assembler:
lcall UART_CmdReset ; Call function to reset command buffer.

Parameters:
None

Return Value:
None
Document Number: 001-13628 Rev. *J Page 24 of 34

8-Bit UART
Side Effects:
Resets UART character count and clears the receive buffer. Any characters remaining in the buffer
are lost. The A and X registers may be modified by this or future implementations of this function. The
same is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and
CY8CLED16). When necessary, it is the calling function's responsibility to preserve the values across
calls to fastcall16 functions. Currently, only the CUR_PP page pointer register is modified.

UART_bCmdCheck

Description:
Checks if command terminator has been received.

C Prototype:
BYTE UART_bCmdCheck(void)

Assembler:
lcall UART_bCmdCheck ; Call function to get command complete status.
cmp A,0x00 ; Check if command complete
jnz ProcessCmd ; Process command buffer

Parameters:
None

Return Value:
A nonzero value is returned if a command terminator has been received.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions. Currently, only the CUR_PP page pointer register is modified.

UART_bCmdLength

Description:
Returns length of characters in the command buffer. This command returns the current command
length, whether a command terminator has been received or not.

C Prototype:
BYTE UART_bCmdLength(void)

Assembler:
lcall UART_bCmdLength ; Call function to get current command

; Command length is returned in Accumulator

Parameters:
None

Return Value:
Length of current string in receive buffer.
Document Number: 001-13628 Rev. *J Page 25 of 34

8-Bit UART
Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions. Currently, only the CUR_PP page pointer register is modified.

UART_szGetParam

Description:
Returns the next parameter from the receive buffer, which is delimited by the Param_Delimiter set in
the Device Editor. After all parameters have been returned, any subsequent calls return a null pointer
(zero).

C Prototype:
char * UART_szGetParam(void)

Assembler:
lcall UART_szGetParam ; Call function to return pointer to the

; next parameter.
; Pointer is returned in A and X.

Parameters:
None

Return Value:
char * strPtr: Pointer to parameter string.

Side Effects:
The receive buffer is modified each time szGetParam is called. Nulls are placed after each parameter.
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions. Currently, the CUR_PP and IDX_PP page pointer registers are modified.

UART_szGetRestOfParams

Description:
Returns a pointer to the remainder of the receive buffer string that is not returned with szGetParam.
If this function is called before szGetParam, a pointer to the entire receive buffer is returned.

C Prototype:
char * UART_szGetRestOfParams(void)

Assembler:
lcall UART_szGetRestOfParams ; Call function to return pointer to the

; remainder of the receive buffer.
; Pointer is returned in A and X.

Parameters:
None
Document Number: 001-13628 Rev. *J Page 26 of 34

8-Bit UART
Return Value:
char * strPtr: Pointer to remainder of receive string.

Side Effects:
The A and X registers may be modified by this or future implementations of this function. The same
is true for all RAM page pointer registers in the Large Memory Model (CY8C29xxx and CY8CLED16).
When necessary, it is the calling function's responsibility to preserve the values across calls to
fastcall16 functions. Currently, only the CUR_PP page pointer register is modified.

UART_bErrCheck

Description:
Checks command error since the last time bErrCheck was called.

C Prototype:
BYTE UART_bErrCheck(void)

Assembler:
lcall UART_bErrCheck ; Call function to return error status
cmp A,0x00 ; Check for error
jnz ProcessError ; If error, Process the error condition

Parameters:
None

Return Value:
BYTE bErr: MSB contains the status of any error condition that may have occurred since the last time
this function was called.

Side Effects:
Error status is cleared. The A and X registers may be modified by this or future implementations of
this function. The same is true for all RAM page pointer registers in the Large Memory Model
(CY8C29xxx and CY8CLED16). When necessary, it is the calling function's responsibility to preserve
the values across calls to fastcall16 functions. Currently, only the CUR_PP page pointer register is
modified.

Error Flags Value Description

UART_RX_PARITY_ERROR 0x80 Parity Error

UART_RX_OVERRUN_ERROR 0x40 Buffer overrun Error

UART_RX_FRAMING_ERROR 0x20 Character framing Error

UART_RX_BUF_OVERRUN 0x10 Software RX buffer overrun
Document Number: 001-13628 Rev. *J Page 27 of 34

8-Bit UART
Sample Firmware Source Code
Here is an assembly language code sample for the UART User module:
;**
; LoopBack:
;
; This code sample illustrates how to setup a UART loopback.
; Data received is echoed back to the receiver. If an error
; is received, then a NAK is returned.
;
; This sample is written to be performed in the non-interrupt
; processing. This code could easily be written to be
; interrupt driven.
; In this example a Counter8 user module is used to generate
; this clock. The following are the parameter settings for the
; Counter8 User Module used for this example.
; Counter8 (placed in DBA03)
; Clock 48MHz
; Enable High
; Output None
; Period 155
; CompareValue 78
; CompareType Less Than Or Equal
; InterruptType Terminal Count
;
; Using the settings above the UART baud rate can be calculated.
; baud rate = 48MHz / ((Period+1) * (over Sample rate))
; = 48MHz / ((155+1) * 8)
; = 38.4 kBaud
;
; The settings for the UART are as follows:
;
; UART (Placement RX => DAC06, TX => DCA07)
; Clock DBA03 Broadcast
; RX Input Global_IN_5
; TX Output Global_OUT_7
; TX InterruptMode TXComplete
; RxCmdBuffer Enable
; RxBufferSize 16 Bytes
; CommandTerminator 13 (CR)
; Param_Delimiter 32 (space)
; IgnoreCharsBelow 32 (Ignore all chars below space, except ; CR)
;
;
; First the UART and Counter8 user modules are initialized. The
; period and compare values for the Counter8 User Module are set to
; generate the 8X clock. If the period and compare values for
; the Counter8 User Module are set in the parameter window, it is
; not required to set them in the user program.
;
;**
include "m8c.inc" ; part specific constants and macros
include "PSoCAPI.inc" ; PSoC API definitions for all User Modules

export _main
Document Number: 001-13628 Rev. *J Page 28 of 34

8-Bit UART
NAK_RESPONSE: equ 00
_main:

mov A,UART_PARITY_NONE ; No parity
 call UART_Start
call Counter8_Start
.WaitForData: ; wait for data to be received
call UART_bReadRxStatus
and A, UART_RX_COMPLETE
jz .WaitForData

and A, UART_RX_ERROR ; data received - see if data is valid
jz .GetData

mov A, NAK_RESPONSE ; error detected setup to send a NAK
jmp .TxData
.GetData:

call UART_bReadRxData ; read the data from the receiver
.TxData:

call UART_SendData ; transmit the response data
jmp .WaitForData ; go wait for next byte

C code example:
//--
// Description:
// This example program shows how easy it is to use the PSoC
// serial port with this user module.
//
// The UART requires a clock that is 8 times the desired Baud Rate.
// In this example a Counter8 user module is used to generate
// this clock. The following are the parameter settings for the
// Counter8 User Module used for this example.
//
// Counter8 (placed in DBA03)
// Clock 48MHz
// Enable High
// Output None
// Period 155
// CompareValue 78
// CompareType Less Than Or Equal
// InterruptType Terminal Count
//
// Using the settings above the UART baud rate can be calculated.
// baud rate = 48MHz / ((Period+1) * (over Sample rate))
// = 48MHz / ((155+1) * 8)
// = 38.4 kBaud
//
// The settings for the UART are as follows:
//
// UART (Placement RX => DAC06, TX => DCA07)
// Clock DBA03 Broadcast
Document Number: 001-13628 Rev. *J Page 29 of 34

8-Bit UART
// RX Input Global_IN_5
// TX Output Global_OUT_7
// TX InterruptMode TXComplete
// RxCmdBuffer Enable
// RxBufferSize 16 Bytes
// CommandTerminator 13 (CR)
// Param_Delimiter 32 (space)
// IgnoreCharsBelow 32 (Ignore all chars below space, except CR)
//
//
// First the UART and Counter8 user modules are initialized. The
// period and compare values for the Counter8 User Module are set to
// generate the 8X clock. If the period and compare values for
// the Counter8 User Module are set in the parameter window, it is
// not required to set them in the user program, but are set here
// to make it clear how the UART clock is generated. Next a
// sample string is printed to welcome you to the program. The
// program then sits and waits for characters until a command
// terminator is received (CR). Once the command terminator is received
// it parses the parameters and outputs them to the UART TX port.
// The command buffer is then reset and waits for the next command.
//
// Example:
// Input:
// "foobar aa bbb cc"(CR)
//
// Output:
//
// Welcome to PSoC UARTlus test program. V1.1
// Found valid command
// Command =>foobar<
// Parameters:
// <aa>
// <bbb>
// <c>
//
//--
#include <m8c.h>
#include "PSoCAPI.h"

void main(void)
{

 char * strPtr; // Parameter pointer

UART_CmdReset(); // Initialize receiver/cmd
 // buffer
 UART_IntCntl(UART_ENABLE_RX_INT); // Enable RX interrupts

 Counter8_WritePeriod(155); // Set up baud rate generator
 Counter8_WriteCompareValue(77);
 Counter8_Start(); // Turn on baud rate generator

UART_Start(UART_PARITY_NONE); // Enable UART

Document Number: 001-13628 Rev. *J Page 30 of 34

8-Bit UART
M8C_EnableGInt ; // Turn on interrupts

UART_CPutString("\r\nWelcome to PSoC UART test program. V1.1 \r\n");

while(1) {

if(UART_bCmdCheck()) { // Wait for command
if(strPtr = UART_szGetParam()) { // More than delimiter"
 UART_CPutString("Found valid command\r\nCommand =>");
 UART_PutString(strPtr); // Print out command
 UART_CPutString("<\r\nParamaters:\r\n");
 while(strPtr = UART_szGetParam()) { // loop on each parameter
 UART_CPutString(" <");
 UART_PutString(strPtr); // Print each parameter
 UART_CPutString(">\r\n");
 }
}
UART_CmdReset(); // Reset command buffer
}

}
}

Configuration Registers
This section describes the PSoC block and other system registers used or modified by the UART User
Module. Only the parameterized symbols are explained.
Table 4. Block RX, Data Shift Register: DR0

RX Shift Register: When a start bit is detected on the input, the RX state machine hardware generates a
divide-by-8 bit clock that shifts data into this register.
Table 5. Block RX, Data Register: DR1

This register is not used.
Table 6. Block RX, Data Buffer Register: DR2

RX Buffer Register: Data is transferred from the RX Shift register after the stop bit has been sampled.
Table 7. Block RX, Control Register: CR0

Parity Error is a flag that indicates parity computation result of received data byte. Overrun Error is a flag
that indicates that the RX Buffer register data is overwritten. Framing Error is a flag that indicates the stop
bit was properly received. Rx Active is a flag that indicates whether or not a data byte is actively being

Bit 7 6 5 4 3 2 1 0

Value RX Shift Register

Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

Value RX Buffer Register

Bit 7 6 5 4 3 2 1 0

Value Parity Error Overrun
Error

Framing
Error

Rx Active Rx Reg
Full

Parity Type Parity
Enable

Rx Enable
Document Number: 001-13628 Rev. *J Page 31 of 34

8-Bit UART
received. Rx Reg Full is a flag that indicates a data byte has been completely received, the data byte has
been transferred to the Rx Buffer register, and the error conditions are valid. Parity Type is a type of parity
to compute. This bit is a “don’t care if Parity Enable bit is not set." Parity Enable enables or disables the
computation of the received parity bit. Parity is selected by setting the Parity Type bit. Rx Enable enables
or disables the RX8 receiver.

A read of the Rx Control register puts the status data onto the data bus and clears all the status bits. When
parity or overflow errors are detected, the firmware should not need to perform any actions. If a framing
error is detected, the framer immediately begins to look for the next data byte. If there is a chance in the
system that the RX input could be stuck at logic 0 for an extended period of time, the receiver should be
stopped and the line should be polled for a return to logic 1 before the re-enabling the receiver. If the RX
input is stuck at logic 0, this avoids repeated detection of 'false' start bits while the line is logic 0 and
resulting framing errors when a logic 0 is also detected where the start bit should be.
Table 8. Block RX, Register: Function

This register defines the personality of this Digital Communications Type ‘A’ Block to be a receiver.
Table 9. Block RX, Register: Input

RX Input selects the RX input source. Clock Source selects the clock to drive the receiver timing.
Table 10. Block RX, Register: Output

Table 11. Block TX, Data Shift Register: DR0

TX Shift Register is controlled by the TX state machine hardware, to shift the contents and transmit the
least significant bit. Data is loaded into this register from the DR1 data register by the TX state machine
hardware.
Table 12. Block TX, Data Buffer Register: DR1

TX Buffer Register is used to transmit data that is written to this register by the user module APIs. The
data loaded into this register is transferred to the TX Shift register by the TX state machine.
Table 13. Block TX, Data Register: DR2

Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 1 0 1

Bit 7 6 5 4 3 2 1 0

Value RX Input Clock Source

Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

Value TX Shift Register

Bit 7 6 5 4 3 2 1 0

Value TX Buffer Register

Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 0 0 0
Document Number: 001-13628 Rev. *J Page 32 of 34

8-Bit UART
This register is not used.
Table 14. Block TX, Control/Status Register: CR0

Tx Complete is a flag that indicates if a data byte is in the process of being transmitted. This bit is reset
when the register is read. Tx Reg Empty is a flag that indicates when the Buffer register is empty. Parity
Type is the type of parity to compute. This bit is a “don’t care if Parity Enable bit is not set." Parity Enable
enables or disables the computation and transmission of a parity bit with data byte. Parity is selected by
setting the Parity Type bit. Tx Enable enables or disables the TX transmitter.
Table 15. Block TX, Register: Function

This register defines the personality of this Digital Communications Type ‘A’ Block to be a transmitter.
Table 16. Block TX, Register: Input

Clock Source is the selected clock to drive the transmitter timing.
Table 17. Block TX, Register: Output

TX Output Enable and Select specifies the output of the TX8.

Bit 7 6 5 4 3 2 1 0

Value Reserved Reserved TX
Complete

TX Reg
Empty

Reserved Parity Type Parity
Enable

TX Enable

Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 1 1 0 1

Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 Clock Source

Bit 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 TX Output Enable and Select
Document Number: 001-13628 Rev. *J Page 33 of 34

8-Bit UART
Version History

Note PSoC Designer 5.1 introduces a Version History in all user module datasheets. This section docu-
ments high level descriptions of the differences between the current and previous user module ver-
sions.

Version Originator Description

5.3 DHA Added compatibility for Large Memory Model chips.
Document Number: 001-13628 Rev. *J Revised March 3, 2015 Page 34 of 34
Copyright © 2001-2015 Cypress Semiconductor Corporation. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility
for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended
to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its
products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products
in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

PSoC Designer™ and Programmable System-on-Chip™ are trademarks and PSoC® is a registered trademark of Cypress Semiconductor Corp. All other trademarks or registered trademarks
referenced herein are property of the respective corporations.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign),
United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works
of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with
a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is
prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not
assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems
where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer
assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

	Introduction
	Features and Overview
	Functional Description
	TX - UART Transmitter
	RX - UART Receiver
	Communication System Accuracy

	Timing
	DC and AC Electrical Characteristics
	Placement
	Parameters and Resources
	Interrupt Generation Control

	Application Programming Interface
	UART_Start
	UART_Stop
	UART_EnableInt
	UART_DisableInt
	UART_SetTxIntMode
	UART_SendData
	UART_bReadTxStatus
	UART_bReadRxData
	UART_bReadRxStatus
	High Level API

	Sample Firmware Source Code
	Configuration Registers
	Version History

