
USART and Asynchronous Communication

The USART is used for synchronous and asynchronous serial communication.

USART = Universal Synchronous/Asynchronous Receiver Transmitter

Our focus will be on asynchronous serial communication.

Asynchronous communication does not use a clock to validate data.

Serial data is transferred one bit at a time.

Asynchronous serial interfaces are cheap, easy to use, and until recently, very
common. USB is well on its way to replace the serial comm ports on PCs.

The USART communicates in a full-duplex mode (simultaneous xmit, rcv)

USART and Asynchronous Communication

Serial frame format:

Every frame will have at least
-one start bit
-some data bits (5,6,7,8 or 9)
-one stop bit

Parity is optional

USART and Asynchronous Communication
How can two asynchronous devices communicate with each other?

AVR1
16Mhz

AVR2
16Mhz

There is no known phase relationship between the two AVR boards

How can a receiving board “know” where the center of a bit frame is?

How can it know where the start bit is?

What do we need to know?

start bit

0 1 2 3

USART and Asynchronous Communication

start bit

0 1 2 3

- Need to know how fast the bits are coming (baud rate)
- Need to know where the start bit begins (its falling edge)
- Then we know when to sample

sample sample sample sample

USART and Asynchronous Communication

- The USART uses a 16x internal clock to sample the start bit.

The incoming data is continuously sampled until a falling edge is detected.
Once detected, the receiver waits 6 clocks to begin sampling.

One clock before the expected center of the start bit, 3 samples are taken.

If 2 or 3 are detected as high, the search for another falling edge is started.

If at least one sample is low, the start bit is validated. If so, begin sampling
16 clocks from center of start bit.

Revalidate again with each data byte. Synchronization happens on each
byte.

USART and Asynchronous Communication

- The USART internal clock is set by the UBRR register.

The internal clock is derived from the internal
CPU clock.

Both transmitter and receiver use the same clock to
operate from. The transmitter is synchronous to the
clock. In coming data to the receiver is not.

The baud rates are not exact power of 2 multiples
of the CPU clock, thus baud rate inaccuracies
occur at some settings. This is why you see some
"funny" crystal oscillator frequencies.

USART and Asynchronous Communication

- Error detection
 -Parity
 -created by an XOR of the data bits
 -parity can be even or odd
 -P

even
= dn XOR dn-1 XOR dn-2 XOR d0

 -P
odd

= dn XOR dn-1 XOR dn-2 XOR d0 XOR 1

If we have a data byte, 0b0010_1101
and we want odd parity, the parity bit is set to a “one” to make

 a total of 9 bits which is an odd number of 1's.... i.e., odd parity

Thus, the new data byte with parity is:
0b0010_1101 plus the parity bit 1

parity bit

USART and Asynchronous Communication

- Error detection
-Frame error

-a frame error occurs when the receiver is expecting the stop bit
 and does not find it.
-also known as a synchronization failure
-the frame (byte) must be resent

-Data overrun error
-data was not removed in the receive buffer before another
 byte came and overwrote it.

stop bit(s)

USART and Asynchronous Communication

- USART Electrical path
We use the RS-232 standard for communications to a PC.
RS-232 specifies an inverted +/- 3 Volt interface.

<= -3 volts is considered a “1” or “mark”
>= +3 volts is considered a “0” or “space”

-3V
+3V

USART and Asynchronous Communication

- USART RS232 transceiver
-Charge Pump inverter used to
generate negative voltages.

USART and Asynchronous Communication

- USART Electrical path

The mega128 board uses the MAX232
chip. It has an internal charge pump to
generate the negative and positive voltages
for the RS-232 interface.

The DB9 connector is standard for mating
with a PC serial connector.

The port D interface is shared with the
IR LED I/O devices. They are inverted
also so that an “space” signal does not
keep the IR LED on (100mA).

to port D

to port E

USART and Asynchronous Communication

USART Electrical path
 -UART can be used with IR LED also.

USART and Asynchronous Communication

Some useful USART Software Routines:

//**
// uart_init
//
//RXD0 is PORT E bit 0
//TXD0 is PORT E bit 1
//Jumpers J14 and J16 (mega128.1) OR
//Jumpers J7 and J9 (mega128.2)
//must be in place for the MAX232 chip to get data.
//
void uart_init(){
//rx and tx enable, 8 bit characters
 UCSR0B |= (1<<RXEN0) | (1<<TXEN0);
//async operation, no parity, one stop bit, 8-bit characters
 UCSR0C |= (1<<UCSZ01) | (1<<UCSZ00);
//set to 9600 baud
 UBRR0H=0x00;
 UBRR0L=0x67;
}
//**

USART and Asynchronous Communication

Some useful USART Software Routines:

//**
// uart_putc
//
//Takes a character and sends it to USART0
//
void uart_putc(char data){
 while (!(UCSR0A&(1<<UDRE))); // Wait for previous transmission
 UDR0 = data; // Send data byte
 while (!(UCSR0A&(1<<UDRE))); // Wait for previous transmission
}
//**

//**
// uart_puts
//Takes a string and sends each charater to be sent to USART0
//void uart_puts(unsigned char *str) {
void uart_puts(char *str) {
 int i = 0;
 //Loop through string, send each char
 while(str[i] != '\0'){uart_putc(str[i]); i++;}
}
//**

USART and Asynchronous Communication

Some useful USART Software Routines:

//**
// uart_getc
//Modified to not block indefinately in the case of a lost byte
//
char uart_getc(void) {
 uint16_t timer = 0;
 while (!(UCSR0A & (1<<RXC0))) {
 timer++;
 if(timer >= 16000) return 0;
 } // Wait for byte to arrive
 return UDR0;
}
//**

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

