
20 UART
Page 1

ECEn/CS 224 © 2003-2006
BYU

Universal Asynchronous
Receiver/Transmitter

UART

20 UART
Page 2

ECEn/CS 224 © 2003-2006
BYU

• A UART may be used when:
– High speed is not required
– A cheap communication line between two devices
is required

• Asynchronous serial communication is very cheap
– Requires a transmitter and/or receiver
– Single wire for each direction (plus ground wire)
– Relatively simple hardware
– Asynchronous because the

• PC devices such as mice and modems used to often
be asynchronous serial devices

Why use a UART?

20 UART
Page 3

ECEn/CS 224 © 2003-2006
BYU

UART Uses

• PC serial port is a UART!

• Serializes data to be sent over serial cable
– De-serializes received data

Serial
Cable

Serial
Cable

Device

Serial
Port

Serial
Port

20 UART
Page 4

ECEn/CS 224 © 2003-2006
BYU

UART Uses

• Communication between distant computers

– Serializes data to be sent to modem

– De-serializes data received from modem

Serial
Cable

Serial
Cable

Phone
Line

Phone
Line

Modem

Modem

20 UART
Page 5

ECEn/CS 224 © 2003-2006
BYU

UART Uses

• Used to be commonly used for internet access

Serial
Cable

Phone
Line

Phone
Line

Modem

InternetInternet

20 UART
Page 6

ECEn/CS 224 © 2003-2006
BYU

UART Uses

• Used to be used for mainframe access
– A mainframe could have dozens of serial ports

Serial
Cables

Terminal

Mainframe

Terminal Terminal

Terminal

20 UART
Page 7

ECEn/CS 224 © 2003-2006
BYU

UART Uses

• Becoming much less common

• Largely been replaced by faster, more
sophisticated interfaces

– PCs: USB (peripherals), Ethernet (networking)

– Chip to chip: I2C, SPI

• Still used today when simple low speed
communication is needed

20 UART
Page 8

ECEn/CS 224 © 2003-2006
BYU

UART Functions

• Outbound data

– Convert from parallel to serial

– Add start and stop delineators (bits)

– Add parity bit

• Inbound data

– Convert from serial to parallel

– Remove start and stop delineators (bits)

– Check and remove parity bit

20 UART
Page 9

ECEn/CS 224 © 2003-2006
BYU

UART Character Transmission

• Below is a timing diagram for the transmission
of a single byte

• Uses a single wire for transmission

• Each block represents a bit that can be a
mark (logic ‘1’, high) or space (logic ‘0’, low)

Time

1 bit time

mark

space

20 UART
Page 10

ECEn/CS 224 © 2003-2006
BYU

UART Character Transmission

• Each bit has a fixed time duration determined
by the transmission rate

• Example: a 1200 bps (bits per second) UART will
have a 1/1200 s or about 833.3 µs bit width

1 bit time

20 UART
Page 11

ECEn/CS 224 © 2003-2006
BYU

UART Character Transmission

• The start bit marks the beginning of a new
word

• When detected, the receiver synchronizes
with the new data stream

Start Bit

20 UART
Page 12

ECEn/CS 224 © 2003-2006
BYU

UART Character Transmission

• Next follows the data bits (7 or 8)

• The least significant bit is sent first

7 Data Bits

20 UART
Page 13

ECEn/CS 224 © 2003-2006
BYU

UART Character Transmission

• The parity bit is added to make the number
of 1’s even (even parity) or odd (odd parity)

• This bit can be used by the receiver to check
for transmission errors

Parity Bit

20 UART
Page 14

ECEn/CS 224 © 2003-2006
BYU

UART Character Transmission

• The stop bit marks the end of transmission

• Receiver checks to make sure it is ‘1’

• Separates one word from the start bit of the
next word

Stop Bit

20 UART
Page 15

ECEn/CS 224 © 2003-2006
BYU

UART Character Transmission

• In the configuration shown, it takes 10 bits to
send 7 bits of data

Stop bitStart bit 7 data bits Parity bit

20 UART
Page 16

ECEn/CS 224 © 2003-2006
BYU

UART Transmission Example

• Send the ASCII letter ‘W’ (1010111)

1

Line idling Start bit Parity bit
(odd parity) Stop bit

Line idling again

Mark

Space

7 data bits – Least significant bit first

1 1 0 1 0 1 0

20 UART
Page 17

ECEn/CS 224 © 2003-2006
BYU

Mark

Space

UART Character Reception

Receiver should sample in middle of bits

Start bit says a character is coming,
receiver resets its timers

Receiver uses a timer (counter) to time when it samples.
Transmission rate (i.e., bit width) must be known!

20 UART
Page 18

ECEn/CS 224 © 2003-2006
BYU

Mark

Space

UART Character Reception

If receiver samples too quickly, see what happens…

20 UART
Page 19

ECEn/CS 224 © 2003-2006
BYU

Mark

Space

UART Character Reception

If receiver samples too slowly, see what happens…

Receiver resynchronizes on every start bit.
Only has to be accurate enough to read 9 bits.

20 UART
Page 20

ECEn/CS 224 © 2003-2006
BYU

UART Character Reception

• Receiver also verifies that stop bit is ‘1’

– If not, reports “framing error” to host system

• New start bit can appear immediately after
stop bit

– Receiver will resynchronize on each start bit

20 UART
Page 21

ECEn/CS 224 © 2003-2006
BYU

UART Options

• UARTs usually have programmable options:

– Data: 7 or 8 bits

– Parity: even, odd, none, mark, space

– Stop bits: 1, 1.5, 2

– Baud rate: 300, 1200, 2400, 4800, 9600,
19.2K, 38.4k, 57.6k, 115.2k…

20 UART
Page 22

ECEn/CS 224 © 2003-2006
BYU

UART Options

• Baud Rate

– The “symbol rate” of the transmission system

– For a UART, same as the number of bits per
second (bps)

– Each bit is 1/(rate) seconds wide

• Example:
– 9600 baud � 9600 Hz

– 9600 bits per second (bps)

– Each bit is 1/(9600 Hz) ≈ 104.17 µs long

Not the data
throughput rate!

20 UART
Page 23

ECEn/CS 224 © 2003-2006
BYU

UART Throughput

• Data Throughput Example
– Assume 19200 baud, 8 data bits, no parity, 1 stop bit

• 19200 baud � 19.2 kbps
• 1 start bit + 8 data bits + 1 stop bit � 10 bits

– It takes 10 bits to send 8 bits (1 byte) of data
– 19.2 kbps • 8/10 = 15.36 kbps

• How many KB (kilobytes) per second is this?
– 1 byte = 8 bits
– 1 KB = 1,024 bytes
– So, 1 KB = 1,024 bytes • 8 bits/byte = 8,192 bits
– Finally, 15,360 bps • 1 KB / 8,192 bits = 1.875 KB/s

20 UART
Page 24

ECEn/CS 224 © 2003-2006
BYU

Specifications

• Parameters: 300 baud, 7 data bits, 1 stop bit, even or odd parity

• Inputs:

– Din[6:0]: 7-bit parallel data input
– Send: instructs transmitter to initiate a transmission
– ParitySelect: selects even parity (ParitySelect=0) or odd parity
(ParitySelect=1)

• Outputs:

– Dout: serial data output
– Busy: tells host busy sending a character

Let’s Design a UART Transmitter!

20 UART
Page 25

ECEn/CS 224 © 2003-2006
BYU

System Diagram

Send

ParitySelect

Din 7

Busy

To host
system

DoutUART
Transmitter

To serial
cable

20 UART
Page 26

ECEn/CS 224 © 2003-2006
BYU

Send

Busy

Transmitter/System Handshaking

• System asserts Send and holds it high when it wants to
send a byte

• UART asserts Busy signal in response

• When UART has finished transfer, UART de-asserts
Busy signal

• System de-asserts Send signal

20 UART
Page 27

ECEn/CS 224 © 2003-2006
BYU

Transmitter
State
Machine

Parity
Generator

Mod10
Counter

Shift
Register

300 HZ
Timer

Send

ParitySelect

NextBit

Din
ParityBit

Load

Shift

Dout

ResetTimer

Count10
Increment

7

Busy

Transmitter Block Diagram

ResetCounter

To serial
cable

To host
system

20 UART
Page 28

ECEn/CS 224 © 2003-2006
BYU

The Timing Generator

• Divides system clock down to 300 Hz

• Output is NextBit signal to state machine
– Goes high for one system clock cycle 300 times a
second

• Simply a Mod(fclk/300) resetable counter where
NextBit is the rollover signal

• More sophisticated UARTs have programmable timing
generators for different baud rates

300 Hz
Timer

NextBit

ResetTimer

SystemClock

20 UART
Page 29

ECEn/CS 224 © 2003-2006
BYU

The Mod10 Counter

• Resets to 0 on command from state machine

• Increments on command from state machine

• Counts from 0 to 9, then rolls over to 0

• Tells state machine when it’s going to roll over
from 9 back to 0 (signal Count10)

Mod10
Counter

Count10
Increment

SystemClock

ResetCounter

20 UART
Page 30

ECEn/CS 224 © 2003-2006
BYU

Mod10 Counter in Verilog

module mod10 (clk, reset, increment, count10);
input clk, reset, increment;
output reg count10;

wire [3:0] ns, q, qPlus1;

assign qPlus1 = (q == 9) ? 0 : q+1;
assign ns = (reset) ? 0 :

(increment) ? qPlus1 :
q;

regn #(4) R0 (clk, ns, q); // Assume this subm odule exists

assign count10 = increment & (q == 9);

endmodule

This could also be written using behavior Verilog (an always block)

20 UART
Page 31

ECEn/CS 224 © 2003-2006
BYU

The Parity Generator

• Combinational circuit

• Generates ParityBit according to value of
Din[6:0] and ParitySelect input

Parity
Generator

ParitySelect

Din
ParityBit

7

20 UART
Page 32

ECEn/CS 224 © 2003-2006
BYU

The Parity Generator

• The value of ParityBit is the bit needed to
make the number of 1’s even (if even parity)
or odd (if odd parity)

ParityBit = 0ParityBit = 1Odd number of ‘1’s

ParityBit = 1ParityBit = 0Even number of ‘1’s

Odd Parity

(ParitySelect = 1)

Even Parity

(ParitySelect = 0)

20 UART
Page 33

ECEn/CS 224 © 2003-2006
BYU

An 8-Bit Parity Generator

Din[0]
Din[1]
Din[2]
Din[3]
Din[4]
Din[5]
Din[6]
Din[7]

Odd/Even#

ParityBit

For 7-bit parity, tie Din[7] to a ‘0’

Will be ‘0’ if Din has
even number of 1’s,
0 if odd number.

20 UART
Page 34

ECEn/CS 224 © 2003-2006
BYU

7-bit Parity Generator in Verilog

module parity_gen (data, oddeven, parity);
input [6:0] data;
input oddeven;
output parity;

assign parity = (^data) ^ oddeven;
endmodule

Reduction XOR
operator

20 UART
Page 35

ECEn/CS 224 © 2003-2006
BYU

The Shift Register

• Standard Parallel-In/Serial-Out (PISO) shift
register

• Has 4 operations:

– Do nothing

– Load parallel data from Din
– Shift right

– Reset

20 UART
Page 36

ECEn/CS 224 © 2003-2006
BYU

The Shift Register

• Make it a 9-bit register
• When it loads:

– Have it load ‘0’ for the start bit on the right (LSB)
– Have it load the parity bit on the left (MSB)

– Have it load 7 data bits in the middle
• When it shifts:

– Have it shift ‘1’ into the left so a stop bit is sent at the end

• When it resets:
– Have it load all 1’s so that its default output is a ‘1’ (line idle
value)

‘0’D0D1D2D3D4D5D6P Dout‘1’

Shift Register

20 UART
Page 37

ECEn/CS 224 © 2003-2006
BYU

9-bit Shift Register Module

module shiftReg (clk, loadData, load, shift, sout);
input clk, load, shift;
input [7:0] loadData;
output sout;
wire [8:0] ns, q;

assign ns = (load & shift) ? 9’b111111111 :
load ? {loadData, 1’b0} :
shift ? {1’b1, q[8:1]} :

q;
reg #(9) R0(clk, ns, q);
assign sout = q[0];

endmodule

{ Parity, 7 data bits }

“Reset”

20 UART
Page 38

ECEn/CS 224 © 2003-2006
BYU

Transmitter FSM

Send’

Idle

Load

Send
Load
Busy
ResetCounter
ResetTimer

Count NextBit’

Shift

NextBit

Count10’

Wait

Count10

Shift
Increment
Busy

Send

Send’

Busy

Be sure to choose state
encodings and use logic
minimization that ensures
Busy signal will have no
hazards…

Reset

Load
Shift

20 UART
Page 39

ECEn/CS 224 © 2003-2006
BYU

The Receiver

• Left for you as an exercise!

• Receiver Issues:

1. How to sample the middle of bit periods?

2. How do you check if parity is correct?

3.What do you do on a framing error?

4.What do you do on a parity error?

5. Handshaking with rest of system?

