Universal Asynchronous
Receiver/Transmitter

UART

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 1 BYU

Electrical Engineering

Why use a UART?

+ A UART may be used when:
- High speed is not required

- A cheap communication line between two devices
IS required

» Asynchronous serial communication is very cheap
- Requires a transmitter and/or receiver
- Single wire for each direction (plus ground wire)
- Relatively simple hardware
- Asynchronous because the

» PC devices such as mice and modems used to often
be asynchronous serial devices

ECEN/CS 224 20 UART © 2003-2006
Page 2 BYU

Computer Engineering
Electrical Engineering

UART Uses

* PC serial port is a UART!

- Serializes data to be sent over serial cable
- De-serializes received data

Serial
Serial Cable Serial

Device

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er ng_meeltmg Page 3 BYU

lllllllllllllllllllll

UART Uses

- Communication between distant computers
- Serializes data to be sent to modem
- De-serializes data received from modem

Serial

Phone
Line

Phone . o
Serial Line

Cable

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er ng_meeltmg Page 4 BYU

lllllllllllllllllllll

UART Uses

» Used to be commonly used for internet access

p—

Phone =
Line —=1l|

—=

[—]

Phone ——
Cable
Modem

BYU 20 UART © 2003-2006

= ECEN/CS 224
ompl.x er ng_meeltmg Page 5 BYU

lllllllllllllllllllll

UART Uses

+ Used to be used for mainframe access
- A mainframe could have dozens of serial ports

H

Terminal

Computer Engineering
Electrical Engineering

H

]

Terminal

Mainframe

H

Terminal

ECEN/CS 224

Terminal

20 UART
Page 6

© 2003-2006
BYU

UART Uses

» Becoming much less common

- Largely been replaced by faster, more
sophisticated interfaces

- PCs: USB (peripherals), Ethernet (networking)
- Chip to chip: T2C, SPT

- Still used today when simple low speed
communication is needed

BYU 20 UART © 2003-2006

e ECEN/CS 224
omputer Engineering Page 7 BYU

Electrical Engineering

UART Functions

» Qutbound data

- Convert from parallel to serial
- Add start and stop delineators (bits)
- Add parity bit

+ Inbound data

- Convert from serial to parallel
- Remove start and stop delineators (bits)
- Check and remove parity bit

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 8 BYU

Electrical Engineering

mark

space

UART Character Transmission

Below is a timing diagram for the transmission
of a single byte

Uses a single wire for transmission

Each block represents a bit that can be a
mark (logic '1’, high) or space (logic 'O’, low)

1 bit time

- ECEN/CS 224 20 UART © 2003-2006
llllllllllllllllll Page 9 BYU

Electrical Engineering

UART Character Transmission

- Each bit has a fixed time duration determined

by the transmission rate

+ Example: a 1200 bps (bits per second) UART will
have a 1/1200 s or about 833.3 s bit width

1 bit time

— |

Computer Engineerin ECEn/CS 224 20 UART © 2003'2006
Eleeh il Bt erssimrs Page 10 BYU

1111111111111111111111

UART Character Transmission

* The start bit marks the beginning of a hew
word

* When detected, the receiver synchronizes
with the new data stream

Start Bit

BYU 20 UART © 2003-2006

e ECEN/CS 224
omputer Engineering Page 11 BYU

Electrical Engineering

UART Character Transmission

+ Next follows the data bits (7 or 8)
* The least significant bit is sent first

7 Data Bits
/\
Y I |
|
BYU ECEN/CS 224 20 UART © 2003-2006

Computer Engineering Page 12 BYU

Electrical Engineering

UART Character Transmission

* The parity bit is added to make the number
of 1's even (even parity) or odd (odd parity)

- This bit can be used by the receiver to check
for transmission errors

Parity Bit

L

BYU 20 UART © 2003-2006

e ECEN/CS 224
omputer Engineering Page 13 BYU

Electrical Engineering

UART Character Transmission

» The stop bit marks the end of transmission
- Receiver checks to make sure it is '1’

+ Separates one word from the start bit of the
next word

Stop Bit

L

Computer Engineerin ECEn/CS 224 20 UART © 2003'2006
Lleclprical Enggineeringg Page 14 BYU

UART Character Transmission

* In the configuration shown, it takes 10 bits to
send 7 bits of data

Start bit 7 data bits Parity bit Stop bit

N

e . ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 15 BYU

Electrical Engineering

UART Transmission Example

+ Send the ASCII letter 'W' (1010111)

s , Parity bit
Lmelldlmg Start bit (fd:ll eriT;/) 70'3 bit
Mark I
1 1 1]|]of1]0]1]60 /‘
Space
— — — Line idling again

7 data bits - Least significant bit first

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ﬂompl.l er : ng_meeltmg Page 16 BYU

Electrical Engineering

UART Character Reception

Start bit says a character is coming,
receiver resets its timers

Receiver should sample in middle of bits

Mark |

Space

Receiver uses a timer (counter) to tfime when it samples.
Transmission rate (i.e., bit width) must be known!

BYU ECEn/CS 224 20 UART © 2003-2006

Computer Engineering Page 17 BYU

Electrical Engineering

UART Character Reception

If receiver samples too quickly, see what happens...

Mark

Space

I S—— ECEN/CS 224 20 UART
ﬂompl.x er : ng_meelfmg Page 18

Electrical Engineering

© 2003-2006
BYU

UART Character Reception

If receiver samples too slowly, see what happens...

Mark I

Space

Receiver resynchronizes on every start bit.
Only has to be accurate enough to read 9 bits.

BYU ECEn/CS 224 20 UART © 2003-2006

Computer Engincering Page 19 BYU

Electrical Engineering

UART Character Reception

* Receiver also verifies that stop bit is '1
- If not, reports "framing error” to host system

* New start bit can appear immediately after
stop bit
- Receiver will resynchronize on each start bit

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 20 BYU

Electrical Engineering

UART Options

+ UARTS usually have programmable options:
- Data: 7 or 8 bits
- Parity: even, odd, none, mark, space
- Stop bits: 1,15, 2

- Baud rate: 300, 1200, 2400, 4800, 9600,
19.2K, 38.4k, 57.6k, 115.2k...

Computer Engineerin ECEn/CS 224 20 UART © 2003'2006
Lleclprical En gineeringg Page 21 BYU

UART Options

- Baud Rate

- The "symbol rate” of the transmission system

- For a UART, same as the number of bits per
second (bps)

- Each bit is 1/(rate) seconds wide

. Example: ’Ir\‘ho:o:rj;?e\pi?rfga‘re!
- 9600 baud > 9600 Hz

- 9600 bits per second (bps)

- Each bit is 1/(9600 Hz) = 104.17 us long

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ﬂompl.x er : ng_meeltmg Page 22 BYU

Electrical Engineering

UART Throughput

Data Throughput Example

- Assume 19200 baud, 8 data bits, no parity, 1 stop bit
»+ 19200 baud > 19.2 kbps
- 1 start bit + 8 data bits + 1 stop bit > 10 bits

- It takes 10 bits to send 8 bits (1 byte) of data
- 19.2 kbps + 8/10 = 15.36 kbps

How many KB (kilobytes) per second is this?

- 1 byte = 8 bits

- 1KB =1,024 bytes

- So,1KB =1,024 bytes * 8 bits/byte = 8,192 bits

- Finally, 15,360 bps « 1 KB / 8,192 bits = 1.875 KB/s

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 23 BYU

Electrical Engineering

Let's Design a UART Transmitter!

Specifications
Parameters: 300 baud, 7 data bits, 1 stop bit, even or odd parity

Inputs:
— Din[6:0]: 7-bit parallel data input
— Send: instructs transmitter to initiate a fransmission

— ParitySelect: selects even parity (ParitySelect=0) or odd parity
(ParitySelect=1)

Outputs:
— Dout: serial data output
— Busy: tells host busy sending a character

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 24 BYU

Electrical Engineering

System Diagram

To host
system

A

Send

Busy

UART Dout
ParitySelect Transmitter

Din . To serial
cable

\ 4

BYU ECEn/CS 224 20 UART © 2003-2006

Computer Engineering
Electrical Engineering Page 25 BYU

Transmitter/System Handshaking

System asserts Send and holds it high when it wants to
send a byte

UART asserts Busy signal in response

When UART has finished transfer, UART de-asserts
Busy signal

System de-asserts Send signal

e

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 26 BYU

Electrical Engineering

Transmitter Block Diagram

To host
Sysj\em NextBit 300 HZ
\ ResetTimer | Timer
Send
> . 1
Transmitter ountio Mod10
State Increment | 0
_Busy Machine ResetCounter, Counter
Shift
ParitySelect R Parity Load R Dout=
Generator . Shift
ParityBit Register To serial
Din - | cable
BYU ECEn/CS 224 20 UART © 2003-2006

Computer Engineering Page 27 BYU

Electrical Engineerin g

The Timing Generator

' SystemClock
NextBit 300 Hz y

ResetTimer , Timer

Divides system clock down to 300 Hz

Output is NextBit signal to state machine

- Goes high for one system clock cycle 300 times a
second

Simply a Mod(#,,/300) resetable counter where

NextBit is the rollover signal

* More sophisticated UARTs have programmable timing
generators for different baud rates

- ECEN/CS 224 20 UART © 2003-2006
ompu er ngmeeqng Page 28 BYU

Electrical Engineering

The Mod10 Counter

Countl0
Increment | Mod10

ResetCounter | Counter

SystemClock

Resets to O on command from state machine
Increments on command from state machine
Counts from O to 9, then rolls over to O

Tells state machine when it's going to roll over
from 9 back to O (signal Count10)

- ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meelfmg Page 29 BYU

Electrical Engineering

Mod10 Counter in Verilog

module mod10 (clk, reset, increment, count10);
input clk, reset, increment;
output reg countlO;

wire [3:0] ns, q, qPlusl;
assign gPlusl =(q==9) ? 0: g+1;

assign ns = (reset) ?0:
(increment) ? qPlusl :

q;
regn #(4) RO (clk, ns, Q); /l Assume this subm odule exists
assign count10 = increment & (q == 9);

endmodule

This could also be written using behavior Verilog (an always block)

BYU ECEn/CS 224 20 UART © 2003-2006

Computer Engineering Page 30 BYU

Electrical Engineerin g

The Parity Generator

ParitySelect

Parity Parit=yBit

.| Generator

Din

- Combinational circuit

- Generates ParityBit according to value of
Din[6:0] and ParitySelect input

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 31 BYU

Electrical Engineering

The Parity Generator

* The value of ParityBit is the bit needed to
make the number of 1's even (if even parity)
or odd (if odd parity)

Even Parity Odd Parity
(ParitySelect = 0) (ParitySelect = 1)

Even number of '1's ParityBit = 0 ParityBit = 1
Odd humber of 'I's ParityBit = 1 ParityBit = O

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 32 BYU

Electrical Engineering

An 8-Bit Parity Generator

Din[0]
Din[1]
Din[2]
Din[3]
Din[4]
Din[5]
Din[6]
Din[7]

DD_\jD Odd/ ELven#

) > o) D Pariysi

_ D Will be ‘0" if Din has
D even number of 1's,

= O if odd number.

For 7-bit parity, tie Din[7] to a 'O’

Computer Engineering
Electrical Engineering

ECEN/CS 224 20 UART © 2003-2006
Page 33 BYU

7-bit Parity Generator in Verilog

module parity _gen (data, oddeven, parity);
input [6:0] data;
input oddeven;
output parity;

assign parity = (“data) * oddeven;

endmodule I
Reduction XOR
operator
BYU 20 UART © 2003-2006

e ECEN/CS 224
Vompu er Engineering Page 34 BYU

Electrical Engineering

The Shift Register

+ Standard Parallel-In/Serial-Out (PISO) shift

register

* Has 4 operations:

- Do nothing

- Load parallel data from Din
- Shift right

- Reset

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ompu er : ng_meeltmg Page 35 BYU

Electrical Engineering

The Shift Register

Make it a 9-bit register
When it loads:
- Have it load 'O’ for the start bit on the right (LSB)
- Have it load the parity bit on the left (MSB)
- Have it load 7 data bits in the middle
When it shifts:
- Have it shift 1" into the left so a stop bit is sent at the end
R R I T
1 s p|D|D|D,|D,|D,|D,|D
Shift Register

v
O’ , Dout

0

When it resets:

- Have it load all 1's so that its default output is a1’ (line idle
value)

Comiantor B : ECEN/CS 224 20 UART © 2003-2006
ﬂompl.x er : ng_meeltmg Page 36 BYU

Electrical Engineering

9-bit Shift Register Module

{ Parity, 7 data bits }

v

module shiftReg (clk, loadData, load, shift, sout);
input clk, load, shift;
input [7:0] loadData;
output sout;
wire [8:0] ns, Q;

"Reset”

assign ns = (load & shift) ? 9°b111111111 :

load ? {loadData, 1'b0} :

shift ?{1'bl, q[8:1]} :

qQ
reg #(9) RO(clk, ns, q);
assign sout = q[O];
endmodule
BYU 20 UART

ECEN/CS 224

Computer Engineering Page 37

Electrical Engineering

© 2003-2006
BYU

Transmitter FSM

Send’

Load

Busy
ResetCounter
ResetTimer

Shift
Increment

Busy

BYU

Computer Engineering
Electrical Engineering

ECEN/CS 224

Be sure to choose state
encodings and use logic
minimization that ensures
Busy signal will have no
hazards...

20 UART © 2003-2006
Page 38 BYU

The Receiver

+ Left for you as an exercisel

« Receiver Issues:

1. How to sample the middle of bit periods?
2.How do you check if parity is correct?

3. What do you do on a framing error?

4. What do you do on a parity error?

5. Handshaking with rest of system?

BYU 20 UART © 2003-2006

e ECEN/CS 224
omputer Vng_meeltmg Page 39 BYU

Electrical Engineering

