
UNIVERSAL ASYNCHRONOUS 
RECEIVER/TRANSMITTER - UART-RS232 

 
 

The Universal Asynchronous Receiver/Transmitter (UART) controller is the key 
component of the serial communications subsystem of a microprocessors, microcontrollers and 
computers. The UART can take bytes of data in parallel fashion and transmits the individual bits 
in a sequential fashion. At the same time, a second UART can receive serial bits sent by UART 
and convert the bits into complete bytes. There are two types of serial transmission: Synchronous 
and Asynchronous. The asynchronous communication is known as UART and asynchronous is 
known as Universal Synchronous-Asynchronous Receiver/Transmitter (USART). Latest 
standard UART employ FIFO buffer for improved functional capability. UARTs are generally 
used to modem control functions. Hence they have several functional control registers using 
which efficient interface can be established with host processor. Embedded processors employ 
built in hard core UART block while soft IP UART provide programmable and reconfigurable 
flexibilities which are very much advantages in FPGA applications. Hardware Descriptive 
Languages (HDL) like verilog can be used for the behavioral description of the UART. 

The UART device changes incoming parallel data to serial data which can be sent on a 
communication line. A second UART is used to receive the information which converts serial 
data to parallel. The UART performs all the tasks, timing, parity checking, etc. needed for the 
communication. The UART requires external line drivers (EIA RS 232 C interface) to interface 
to external world. In computer systems, the UART is connected to circuitry that generates signals 
that comply with the EIA RS232-C specification. There is also a CCITT standard 
named V.24 that resembles the specifications included in RS232-C. Registers are accessible to 
set or review the communication parameters to use the UART in different environments. Using 
these registers the communication speed (baud rate), the type of parity check, and the way 
incoming information is signaled to the running software are set according to the requirement of 
host processor. 

Serial UART types 

PC compatible serial communication started with the 8250 UART in the IBM XT 
machines. Then UART is upgraded to 8250A, 8250B and then 16450 (manufactured by 
National Semiconductor) which is implemented in the AT machines. The higher bus speed 

http://asic-soc.blogspot.in/2007/12/universal-asynchronous.html
http://asic-soc.blogspot.in/2007/12/universal-asynchronous.html


could not be reached by the 8250 series but newer 16450 were capable of handling a 
communication speed of 38.4 kbs. 16450 had 1 byte FIFO. The later improved 
version16550A contained two on-board FIFO buffers, each capable of storing 16 bytes. 
One buffer for transmitter and one buffer for receiver. This made it possible to increase 
maximum reliable communication speeds to 115.2 kbs and use effectively in modems with 
on-board compression. DMA access ability is provided in 16550. Two pins were redefined 
for this purpose. DMA transfer is not used with most applications. The most 
common UART used is16550A. Newer versions such as 16650 contain two 32 byte FIFO's 
and on board support for software flow control are latest advancements in industry. Texas 
Instruments is developing the 16750 which contains 64 byte FIFO's. 

A UART usually contains the following components: 

· Baudrate clock generator: Multiple of the bit rate to improve sampling in the middle 
of a bit period. For generating this timing information, each UART uses an oscillator 
generating a frequency of about 1.8432 MHz. This frequency is divided by 16 to generate 
the time base for communication. Hence the maximum allowed communication speed is 
115200 bps. UARTs like the 16550 are capable of handling higher input frequencies up to 
24 MHz which makes it possible to communicate with a maximum speed of 1.5 Mbps. 

· Input and output shift registers: Each UART contains a shift register which is the 
fundamental method of conversion between serial and parallel forms. These registers shifts 
the data that has to be serially transmitted or serially received. 

· Transmit and receive control: This control logic checks for the control signals from 
host processor to start or stop the transmission and reception of the data bits. In case of 
any error it also generates error signals. 

· Optional transmit and receive buffers: Buffers can be used to hold the data 
temporarily. 

· Optional parallel data bus buffer: This buffer improves the speed. 

· Optional FIFO: The UART works by writing data from the host processor to its FIFO 
buffers, and feeding the data from the buffer to the serial device in the format dictated by 
the user (typically 8-N-1). 

 

Serial Data Format and Asynchronous Serial Transmission 

http://en.wikipedia.org/wiki/Shift_register


As the name indicates, asynchronous transmission need not send clock signal to send the 
data to the receiver. The sender and receiver must agree on timing parameters in advance and 
special bits such as start and stop bits are added to each word which is used to synchronize the 
sending and receiving units. The UART serial data format is shown in Figure (1). 

 

Figure (1) Serial Data Format 

A bit called the "Start Bit" is added to the beginning of each word that is to be 
transmitted. The Start Bit indicates the start of the data transmission and it alerts the receiver 
that a word of data is about to be sent. Upon reception of start bit the clock in the receiver goes 
into synchronization with the clock in the transmitter. The accuracy of these two clocks should 
not deviate more than 10% during the transmission of the remaining bits in the word. 

The individual bits of the word of data are sent after the start bit. Least Significant Bit 
(LSB) is sent first. The transmitter does not know when the receiver has read at the value of the 
bit. The transmitter begins transmitting the next bit of the word on next clock edge. 

Parity bit is be added when the entire data word has been sent. This bit can be used to 
detect errors at the receiver side. Then one Stop Bit is sent by the transmitter to indicate the end 
of the valid data bits. 

On the receiver side once it receives all of the bits in the data word, it can check for 
theParity Bits. To accomplish this task both transmitter and receiver must agree on whether a 
Parity Bit is to be used. Then Stop Bit is encountered by receiver. A missing stop bit may result 
entire data to be garbage. This will cause a Framing Error and will be reported to the host 
processor when the data word is read. Framing Error can be caused due to mismatch of 
transmitter and receiver clocks. 

http://bp2.blogger.com/_Se0VANaI9uM/R2wVHwo52zI/AAAAAAAAANc/0QdP_pFLz8s/s1600-h/Serial+Data+Format.JPG


The UART automatically discards the Start, Parity and Stop bits irrespective of whether 
data is received correctly or not. If the sender and receiver are configured identically, these bits 
are not passed to the host. To transmit new word, the Start Bit for the new word is sent as soon as 
the Stop Bit for the previous word has been sent. 

The transmission speed in asynchronous communication is measured by Baud Rate. A 
Baud Rate represents the number of bits that are actually being sent over the media. The Baud 
rate includes the Start, Stop and Parity bits. The Bit rate (Bits per Second-bps) represents the 
amount of data that is actually sent from the transmitting device to the other device. Speeds for 
UARTs are in bits per second (bit/s or bps), although often incorrectly called the baud rate. 
Standard baud rates are: 110, 300, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, 
76800, 115200, 230400, 460800, 921600, 1382400, 1843200 and 2764800 bit/s. 

 

UART Registers 

Twelve registers control the communication between the processor and 
the UART.Behavior of the communication can be changed by reading or writing registers. 
Each register is eight bits wide. On PC compatible devices, the registers are accessible in 
the I/O address area. The function of each register is discussed here in brief. The registers 
are shown in Figure 

 

 

Figure (2) The 16550 UART registers 

http://en.wikipedia.org/wiki/Bits_per_second
http://en.wikipedia.org/wiki/Baud
http://www.lammertbies.nl/comm/info/RS-232_io.html#intr
http://bp0.blogger.com/_Se0VANaI9uM/R2wUyQo52yI/AAAAAAAAANU/7Wu-ByTv-6o/s1600-h/The+16550+UART+registers.JPG


RBR: Receiver buffer register 

The Receiver Buffer Register (RBR) contains the byte received if no FIFO is used, 
or the oldest unread byte with FIFO's. If FIFO buffering is used, each new read action of the 
register will return the next byte, until no more bytes are present. Bit 0 in the Line Status 
Register (LSR) can be used to check if all received bytes have been read. This bit will 
change to zero if no more bytes are present. 

THR: Transmitter holding register 

Transmitter Holding Register (THR) is used to buffer outgoing characters. Without 
FIFO buffering, only one character can be stored. Otherwise the amount of characters 
depends on the type of UART. To check if new information must be written to THR Bit 5 in 
theLine Status Register (LSR) can be used. Empty register is indicated by the value 1. If 
FIFO buffering is used, more than one character can be written to the transmitter holding 
register when the FIFO is empty. 

IER: Interrupt enable register 

In interrupt driven configuration, the UART will signal each change by generating a 
processor interrupt. A software routine must be read interrupt signal to handle the interrupt 
and to check what state change was responsible for it. Interrupt enable register (IER) is 
used to enable the interrupt. 

IIR: Interrupt identification register 

The Interrupt Identification Register (IIR) bits show the current state of 
the UART and which state change caused the interrupt to occur. Based on bit values of the 
IIR interrupt can be serviced. 

FCR: FIFO control register 

The FIFO control register (FCR) is present starting with the 16550 series. The 
behavior of the FIFOs in the UART is controlled by this register. If a logical value 1 is written 
to bits 1 or 2, the function attached is triggered. The other bits are used to select a specific 
FIFO mode. 

LCR: Line control register 



The Line Control Register (LCR) is used at initialization to set the communication 
parameters such as parity, number of data bits etc. The register also controls the 
accessibility of the DLL and DLM registers. 

MCR: Modem control register 

Handshaking actions with the attached device are accomplished by the Modem 
Control Register (MCR). In the UART series 16550, setting and resetting of the control 
signals must be done by software. But in the new 16750, flow control automatically handled. 

LSR: Line status register 

The Line Status Register (LSR) shows the current state of communication. Errors, 
the state of the receiver and transmit buffers are available. 

MSR: Modem status register 

The Modem Status Register (MSR) contains information about the four incoming 
modem control lines on the device. The four most significant bits contain information about 
the current state of the inputs. The least four significant bits are used to indicate state 
changes. Each time the register is read the four LSB's are reset. 

DLL and DLM: Divisor latch registers 

The communication speed of the UART is changed by using a programmable value 
stored in Divisor Latch Registers DLL and DLM which contains the least and most 
significant registers. 

 

UART Transmitter 

The block representation of serial data transmission is depicted in Figure (3).The serial 
transmit block has FIFO buffer into which data is written by the host processor. After the data is 
written into the buffers it is transmitted serially onto tx. As long as the FIFO is not full the serial 
transmit block sets the signal tx_en high. 

 



 

Figure (3) Serial data transmission 

 

Transmit FIFO 

The FIFO is 8-bit by 32-word. It receives control signals from the serial transmit block. 
The data on signal data_bus is written into its buffer. At the same time the write pointer is 
incremented. The data is read onto FIFO and the read pointer is reset when the read pointer has 
reached its maximum. The write pointer is cleared when the write pointer has reached its 
maximum. The tx_en is set low when the FIFO is full. 

Serial Transmit Block 

This component is responsible for serial transmission of data onto tx. It generates the 
requisite control signals for reading and writing the transmit FIFO. This signal is used as an 
enable by the transmit data counter, and the transmit block. The transmit data counter keeps 
count of the number of data bits transmitted onto tx. These signals are provided by the transmit 
control block. The parity counter counts the number of bits that were high in the eight bits of 
data being transmitted. The transmit control block controls the whole process of transmission. It 
is modeled in the form of a state machine. 

 

UART-Receiver 

The block representation of serial data reception is depicted in Figure (4).The serial 
receive block can also has a FIFO buffers. The block checks for the parity and the validity of the 
data frame on the rx input and then writes correct data into its buffers. It also sets the 
signal byte_ready low if its FIFO is empty. 

http://bp3.blogger.com/_Se0VANaI9uM/R2wUfAo52xI/AAAAAAAAANM/wfhwC8bQSvA/s1600-h/Serial+data+transmission.JPG


Receive FIFO 

The FIFO is 8-bit wide and 32 byte deep. It receives control signals from the serial 
receive block. The data received from the receive block written into its buffer. The write pointer 
is cleared when the write pointer reaches its maximum limit before further increment. 

 

 

Figure (4) Serial data reception 

Serial Receive Block 

Serial data is received by this component. It generates the requisite control signals for 
reading and writing the receive FIFO. It generates required sample clock to sample the incoming 
data and determine the baud rate of the incoming data. 

 

UART Errors 

Overrun Error 

An "overrun error" occurs when the UART cannot process the byte that just came in 
before the next one arrives. The host processor must service the UART in order to remove 
characters from the buffer. If the host processor does not service the UART and the buffer 
becomes full, then Overrun Error will occur. 

Framing Error 

http://bp1.blogger.com/_Se0VANaI9uM/R2wULgo52wI/AAAAAAAAANE/dWp_CiL3DTo/s1600-h/Serial+data+reception.JPG


A "Framing Error" occurs when the designated "start" and "stop" bits are not valid. 
Start bit acts as a reference for the remaining bits. When the "stop" bit is expected if the 
data line is not in the expected idle state a Framing Error will occur. 

Parity Error 

A "Parity Error" occurs when the number of "active" bits does not agree with the 
specified parity configuration of the UART. 

 

External Interface 

The external signalling levels that are used between different equipment are not 
generated by UART. An interface is used to convert the logic level signals of the UART to 
the external signalling levels. Examples of standards for voltage signalling are RS-232, RS-
422and RS-485 from the EIA. For embedded system applications UARTs are commonly 
used with RS-232. It is useful to communicate between microcontrollers and also with 
PCs. MAX 232 is one of the example ICs which provide RS232 level signals. 

 

http://en.wikipedia.org/wiki/RS-232
http://en.wikipedia.org/wiki/RS-422
http://en.wikipedia.org/wiki/RS-422
http://en.wikipedia.org/wiki/RS-485
http://en.wikipedia.org/wiki/Electronic_Industries_Alliance
http://en.wikipedia.org/wiki/RS-232
Parithy
Typewritten Text
Source : http://asic-soc.blogspot.in/2007/12/universal-asynchronous.html


	UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER - UART-RS232
	Serial UART types
	RBR: Receiver buffer register
	THR: Transmitter holding register
	IER: Interrupt enable register
	IIR: Interrupt identification register
	FCR: FIFO control register
	LCR: Line control register
	MCR: Modem control register
	LSR: Line status register
	MSR: Modem status register
	DLL and DLM: Divisor latch registers
	Overrun Error
	Framing Error
	Parity Error




